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ABSTRACT

Geoid undulation computations were carried out at 39 laser stations
distributed around the world using a combination of terrestrial gravity
data within a cap of radius 2° and a potential coefficient set (Rapp and
Cruz, 1986b) up to degree 180. The traditional methods of Stokes’ and
Meissl’s modification together with the new Molodenskii’s method and the
modified Sjoberg’s method were applied. Performing numerical tests
based on global error assumptions regarding the terrestrial data and
the geopotential set we concluded that the modified Sjoberg’s method is
the most accurate and promising technique for geoid undulation
computations. The numerical computations of the geoid undulations
using all the four methods resulted in agreement with the "ellipsoidal
minus orthometric” value of the undulations on the order of 80 cm or
better for most of the laser stations in the eastern United States,
Australia, Japan, Bermuda and Europe. A systematic discrepancy of
about 2 meters for most of the western United Stiates stations was
detected and verified by using two relatively independent data sets.
The cause of this discrepancy was not found. A correction due to the
inconsistencies of the terrestrial data and the potential coefficients
within the cap surrounding the laser station, called the "local average"
correction improved the results by 30 cm and it seems necessary to
apply this correction. For oceanic laser stations in the western Atlantic
and Pacific oceans that no terrestrial data awvailable, the adjusted
GEOS-3 and SEASAT altimeter data were used for the computation of the
geoid undulation in a collocation method.
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CHAPTER 1

INTRODUCTION

The - purpose of this investigation is the precise absolute geoid
undulation computation for certain laser stations distributed around the
world. The classical methods that combine terrestrial gravity data
within a cap surrounding the computation point together with a high
degree potential coefficient set through the use of integral formulas
have been implemented to attack the problem. The only exception is the
computation of the geoid unduiation at four laser stations in the Pacific
and two stations in West Atlantic that have been carried out using
adjusted Geos-3 and SEASAT altimeter data in a collocation method.
Chapter 2 Awill give the necessary truncation theory. The general
formulation ié given in section 2.1. The conventional method of Stokes’
and Meissl’s modification are presented in Section 2.1 as a review. The
modification of Stokes’ function with the ultimate goal to minimize certain
errors in geoid undulation computations is a common concept for both
Molodenskii’s and modified Sjéberg’s methods. This is why Molodenskii’s
and modified Sjoberg’s methods are discussed together as 'new"

methods in Section 2.3.

After the theoretical background for the above four methods is

established, numerical computations based on certain error models will



show us the behavior of the global root mean square (RMS) errors of
the four methods as a function of the capsize. This is discussed in
Chapter 3. We then will present information in Chapter 4 concerning
the selected laser stations around the world. The available gravity data
surrounding the laser stations were processed to be used in the
integration formulas. This process is given in Chapter 5. The
pre-processing of the data is first discussed in Section 5.1. Some
prediction techniques which are necessary to transform the point data
to mean values will be given in Section 5.2. The prediction procedure
we used for the Bermuda area will be separately described in Section
5.3. The terrain corrections and the indirect effect for stations on high
mountains is discussed in Section 5.4. To avoid the spherical
approximation, ellipsoidal correction formulas will be given for the
conventional methods, and will be derived for the new methods, in
Chapter 6. A local average correction which is new in concept will be

given in Chapter 7.

The numerical results for geoid unduation computations using all the
four methods (Stokes’, Meissl’s, Molodenskii’s and modified Sjdoberg’s
methods) will be presented in Chapter 8: The details for the numerical
application of the four methods will be given in Section 8.1; the results
will be given in Section 8.2; a discussion of the results and comparisons
will be given in Section 8.3. Emphasis will be given on the following
comparisons:

a) Terrain corrected vs. uncorrected undulations.

b) Computed undulations using all the four method vs. the value of




the undulations computed as the difference ellipsoidal minus
orthometric height.

c) Undulations computed using two different methods.

d) Undulations computed using the four methods and the values of
the undulations taken from a high degree geopotential model.

e) Undulations computed excluding the local average correction vs.

undulations computed including the local average correction.

The results will be presented by regions, for detection of any
systematic differences that are correlated with a specific region.
The collocation method was also used to compute undulations from
altimeter data in the wvicinity of Bermuda. These results together with
the undulations obtained from the calibration of SEASAT will be
compared to the gravimetric undulations and will be presented in
Section 8.4. The undulations for five oceanic laser stations computed
using altimeter data in a collocation method will be given in Section 8.5.
Finally, summary and conslusions will be given in Chapter 9, and

recommendations for future studies in Chapter 10.

An attempt has been made to maintain a uniform simple notation.

The following will be adhered to:

N geoidal undulation
R mean earth radius
7 mean value of the normal gravity

Yo spherical cap of radius V¥, surrounding the computation




S{cosy)
So

W; (cosy)
i=1

i=2

i=3

i=4

S, (cosy)
M

n

ny

Ag]

Agg

Co=M[(4g,)?]

6C,=M[(£3) 2]
an=M[(2])*]

Qin

point

Stokes’ function

S(cosyo)

proper function subtracted from S(cosvy)

Stokes’ method

Meissl’s method

Molodenskii’s method

Modified Sjoberg method

S(cosy) — W, (cosy)

maximum degree of potential coefficients used

maximum number of Fourier coefficinets of W, (cosy)
maximum degree of the terrestrial error degree
variances

nth surface spherical harmonic of terrestrial A; given
on a sphere of radius R

nth surface spherical harmonic of A5, based on a set of
known potential coefficients given on a sphere of
radius R

degree error of Zgn (Agn = K;n + &)

degree error of A3 (Ags = Zgn + £5)

global average operator

degree variance of Ag, for high degrees given on a
sphere of radius R

degree variance of &5

degree variance of &]

truncation coefficients




xin
win

P,(cosy)

Fourier coefficients of S;{cosy)
Fourier coefficients of W;(cosy)

Legendre polynomial of degree n




CHAPTER II

TRUNCATION THEORY

2.1 General Formulation

The geoid undulation N with respect to a specified mean earth
ellipsoid can be computed using gravity anomalies Ag on the geoid

through the use of the Stokes’ integral:
- R
N = j{ S (cosy) Agdo (2.1)

A number of assumptions are associated with formula (2.1):
a) The boundary surface of the geoid is a sphere «
b) Integration is done using global gravity data (on the sphere o)
c) No masses external to the geoid exist
d) The mass of the reference ellipsoid equals the earth’s mass
e) The normal potential on the ellipsoid equals the gravity potential
on the geoid

f) The ellipsoid’s center coincides wtih the earth’s center of mass.

Assumption a) can be avoided by computing the ellipsoidal
corrections (see Chapter 6); the error when doing assumption c) can be A
diminished by the use of the terrain-corrected gravity anomalies (see
Section 5.4); assumptions d), e) and f) canpot be avoided and if they do
not hold, a zero and first order term will have to be added to the

6




computed undulation. Finally, assumption b) can be more or less
avoided 1if gravity anomalies within a cap ¢, surrounding the
computation point and a given geopotential model are combined. All four
methods that are described below will gplit the integral (2.1) into two
parts (gravity anomalies within a cap and potential coefficient
information) to avoid assumption b) which cannot be rigorously avoided

due to the lack of global coverage of the existing gravity data.

The next step is to consider the basic modification of (2.1), so that
certain errors are minimized. For all the four methods, denoting with
S (cosy) the modified Stokes’ function, the modification is done so that:
(i =1, 2, 3, 4 corresponds to the four methods: Stokes’, Meissl’s,

Molodenskii’s, modified Sjoberg’s).
S;(cosy) = S(cosy) — W, (cosy) (2.2)

where W;(cosy) is a properly defined function of the spherical distance
Y. [For the original Stokes’ method it is clear that no modification is
done, but the notation in (2.2) will be kept even for i = 1, for

convenience. It simply holds then W,(cosy) = 0; S,(cosy) = S(cosvy)].

Any modification of the Stokes’ function has to maintain the
integrity of the basic Stokes’ equation in (2.1). Substituting (2.2) into

(2.1), the modified Stokes’ equation will be:

N; = %7- Il Si(c‘osv)Agdd + % _[l W; (cosy)Agde (2.3)

Equation (2.3) ia rigorously equivalent to (2.1)




A powerful relationship that provides an immediate conversion of an
integral over the sphere ¢ to a series of harmonics is proven in (Jekeli,
1980) and will be used extensively within the text. The relationship

reads:

[[ ®(cos¥)dgnds = 2nkabgom (2.4)
[

where K(cosy) an arbitrary kernel function
2nk,, the eigenvalues of the integral operator in (2.4)
Ag,m the nth degree and mth order spherical harmonic of the
surface function Ag.

From (2.4) we obtain

E E If K(cosy)Ag,do = E Y 2nk, Agnms OT
a

n=0 m=o n=0 m=0
J] (coswragds = 20 T knte, (2.5)
a ‘ n=

Applying (2.5) to (2.3) we easily obtain:

= R_ R
Ny = Ii S (cosy)dgds + 55 T Windey (2.6)

where 27W;, are the eigenvalues of the second integral operator in

(2.3).

Now we are ready to split (2.6) (or equivalently (2.1)) into two

components. From (2.6) we take

- R B R 3
N = Gy ‘J;J. S;(cosy)Agde + 4"76—[l S; (cosy)Agds + Ty HEO W, .A¢,
c [+

(2.7)




Note that the second and the third term in (2.7) are to be computed
from a given set of potential coefficients and the first term is the cap

contribution.

To bring the second integral to the form of a summation, we write

R R -
mdj_.l.si(cosqb)Agdd e fl S (cosy)Agda (2.8)
1
- - [0 if0y =9y
where S, (cosy) = [ S,(cosy) if Y, < ¥ € ; (2.9)
Expanding -S-:(cos;b) in spherical harmonics we have
E(cosw) = zo 2n42rl Q; P, (cosy) (2.10)
n=
where Q;, are the Fourier coefficients of E(coswp):
1 _ .
Qin = 5= || §7(cosy)P,(cosy)do (2.11)
[+

Since 2nQ;, are the eigenvalues of the integral operator of the

right-hand side of equation (2.8), equation (2.5) together with (2.8)

gives

R R 32
Imy II S;(cosy)Agde = 7y niz:oQi,,Agn (2.12)

ag—a;
Substituting (2.12) into (2.7) the final equation for the modified Stokes’

function is

=B _B B
N; = o _[l S; (cosy)Agds + 7 ngo Q; A8, + Ty ngo Windgn
c




- 10

_ R R
= Im Ilcsi(cos'v//)Agdc + Ty XO(Q,,, + Win)Ag, | (2.13)

n-=

The practical computation of (2.13) is done using 8°x0° terrestrial
mean gravity anomalies EgT for the numerical integration and a set of

potential coefficients up to degree M as follows:
N, = _.R_ aT __R M a
L Ilcsi(cosqb)zxg do+ 58 3 (@un + Win)hes (2.14)

To derive expressions for the global RMS undulation error associated
with (2.14), we will follow the concepts given in (Christodoulidis, 1976):
The global RMS undulation error will have four error components, due
to:

1. Erroneous KgT (mean values of 6°x0° blocksize). This error will

be called "propagation error".

2. Finite blocksize (i.e. 8° is not infinitely small) used for the

Stokes’ numerical integration. This error will be called "discretion

error",

3. Erroneous potential coefficients. This error will be called

"commission error".

4. Limited degree of expansion of the pbtential coefficients used.

This error will be called "ommission error”.

Notice that there is an analogy between error sources 1 and 3 and 2
and 4. Errorg 1 and 2 are to be interpreted as the errors due to
erroneous input data in (2.14) (KgT, Kgs) whereas errors 2 and 4 are to

be interpreted as the errors due to the limited degree of expansion of
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the terrestrial data (Zgﬁ are taken only to degree n = n;) and the

potential coefficient data (Zgg are taken only up to degree n = M).

Using the rule of thumb for the maximum degree n; of the

terrestrial error degree variances, we have
ny = 180°/6° (2.15)

where 8° is the blocksize (in degrees) of the mean gravity anomalies

used in (2.14).

We then furthermore assume that

Agl = Agl + £} 0 £n € ng (2.16)

and M[(agl)?] = C, ny < n (2.17)

with C, taken from a model of anomaly error degree variances.

A common model is the Tscherning-Rapp model (Tscherning and

Rapp, 1974):

A{n-1

Cn = @2) (nrB)

gnt2 32£n<o (2.18)

with A = 425.28 mgal?; B = 24, S = 0.999617, C, = 7.55% mgal?® and will be
used for the numerical applications. The C, values refer to a sphere of

radius equal to the mean earth radius.

Similarly, for the pétential coefficient set, we assume:

Ags = Ags + &% 0 £ns<M (2.19)




12

M[(ag8)?] = C, M<n (2.20)
Combining (2.13) and (2.14) together with the assumptions (2.16), (2.17)
and (2.19), (2.20) we obtain the error when computing the geoid

undulation through (2.14):

6N; = Ny — Ny = 6Ny o + 6Ny , + 6Ny 5 + 6Ny 4 (2.21)
with 6N, , = ZE; [I S,(cosv)nEZs;dd (2.22)
ac = .
_ R -

ONy,z = 7 Ilcsi(COSV)nE“T+1Agzda (2.23)

R M
6N1’3 = 2_7 nEO(Q‘n + Wy,)ed (2.24)

R o
Ny,o =5, I (Qin * Win)leR (2.25)

Using (2.5), the errors 6N; ,, 6N; . can be rewritten as:

R L] R n
6Ny 1 = 4—"; “‘ S,(cosﬁ)ngzef,dc - 4—7; J-I S; (cosy) ETa;da =
qg

= n=o
a—c¢

1l

R ( vy § ot - B[ 57¢ v BT ¢
ey J"J; S,\ccsv,ngoanda dmy Jl S; (cosy) 2 eldo, or

n=0

GN"I =

1e33

R T
2—7 . O(X,,, - Qya)eld (2.26)

Here X;, are the Fourier coefficients of S;(cosy). Similarly,

R
0Ny,2 =50 I (X4n — Qin)ig] (2.27)

n=nT
According to our discussion above we have the following errors:
Error 6N, , is the error due to erroneous terrestrial gravity data

(propagation error)
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Error 6N;,, is the error due to discretized data in the numerical
integration (discretion error)

Error 6N; )3 is the error due to erroneous potential coefficients
(commission error)

Error éN; , is the error due to the limited degree of expansion of the

potential coefficients (omission error)

The expected global mean square errors of each error source

described above can now be found, using (2.26), (2.27), (2.24), (2.25):

NE,, = M(6NT,,) = [§§]2n§:(xin - Qya)?%0, (2.28)
WE,. = MOONE,2) = (58T T (Xin - Qua)7C (2.29)
s 2 )2 2y ngn +1 in in n .

—_— R12 M )

6N?’3 = M(GN?sS) = [2_7] nzo(qin + win)26cn (2.30)
— R 2 @

BNE,0 = MOONE,0) = [57) B (@in + W2, (2.31)

The total global mean square error, assuming uncorrelated error sources
is

6N{ = 6Nf , + ONf , + ONf 5 + ON3 , (2.32)
and the total global root mean square error is from (2.32):

ON; = (6N%,, + 6N% . + 8N% , + ONE, )% (2.33)

We thus have derived general expressions for the geoid undulation
computation and it’s expected global RMS error when a modification of

Stokes’ function is attempted. Each of the following four methods, or
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even any arbitrary modification of Stokes’ function which follows the
principal (2.2) can be easily formulated according to (2.14) and (2.28) -
(2.31). The derivation has been given step-by-step because of its
importance for the error analysis discussion, and for the understanding

of the sections 2.2 and 2.3 that follow.

2.2 The Conventional Methods

2.2.1 Stokes’ Method

In Stokes’ method (i=1) no modification of the Stokes’ function is

attempted.

In this case:

W,(cosy) = 0 (2.34)

which means that all the Fourier coefficients W,, are zero:

W, =0 O0&n<e (2.35)

and from (2.2) if follows that
S, {(cosy) = S(cosy) (2.36)

The Fourier coefficients of S,(cosy) can be taken from the expansion of

the Stokes’ function in spherical harmonics:

S, (cosy) = § Zntl P, {cosy) (2.37)

=2 n-1

Expansion (2.37) can be rewritten as

S;(cosy) = ngozn—;l X, P, (cosy) (2.38)

Comparing (2.37) and (2.38) the Fourier coefficients X,, of S, (cosy) are




given by (cf. Heiskanen and Moritz, 1967, p. 97).

Xin =

0 £ns<2

[0
2
1 2<{n< o

15

(2.39)

Thus, the undulation in Stokes’ method is computed according to (2.14)

as.

-

- R AgT R ¥ A
N, = y 'U; S{cosy)Aglde + Ty nEOanAg,S,
[+

(2.40)

with the components of the global mean square error from (2.28) - (2.31)

and (2.35), (2.39)

The total

6N, =

= [Eg]z ﬁT(Xln =~ Qiq)20,

n=o0

(propagation error)

= [_B]z E 2 _ Q ]za | (discretion error)
27 n=nT+1 n-—l in n
2 M . .
= i_] I Q%,6C, (commission error)
Y’ n=o
R 2 © . .
= [.2-;] n=M+1Q1"C" (ommission error)

global RMS error is

(6N%,, + 6N7, . + ONI 5 + ONP o)%

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

The truncation coefficients Q,, can be numerically computed by

subroutine written by Paul

formula.

a

(1973) based on an accurate recursive




2.2.2 Meissl’'s Method
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To avoid the discontinuity of the kernel (2.9), Meissl (1971)

" introduced the following modification:

W2(COS'¢) = [ (S)o 3°‘<’¢¢§£'¢:{

It follows that

_ [ S(cosy) - § 0sy<y
§2(cosy) = { S(cosy) . o < Y & m
and
- (0o - 0y sy
S2(cos) = | Sz (cosy) Yo (Y& m

Notice that the kernel §2(cos'y’z) is now a continuous

spherical distance Yy everywhere in 0 ¢ ¢ & =,

(2.46)

(2.47)

(2.48)

function of the

We now proceed for the computation of the Fourier coefficients X,,,

w2n) an'

Introducing the following recursive formulas for P,(y), y = cosy

(n+t1)Pp+1(y) + 0Pp-y(y) = (20+1)yP,(y) n>1
(1~y*)Pa(y) = n(Pp-1(¥) = ¥Pa(¥)) n21
YPa(¥) = Pa—a(y) = nP,(y) n21
(2n+1)Po(y) = Pa+a(y) = Pa-a(y) n2l

(2.49)
(2.50)
(2.51)

(2.52)

(the prime denotes differentiation with respect to the argument y)

and denoting with y, = cosy,, we take:

1 1 1
Wan = [ W Pady = |7 soPaddy = 8o [* Pa(w)dy, o
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Wap = { 2% P70 (2.53)
1 - Yo
Also Q= [ 5a@Pa(ydy = [1S2(9)Paly)dy =
y C
= [PsmIPamdy - SofTPa(may (2.54)
From (2.54) and (2.52) we obtain
S
E;fi (Pp+1(¥o) — Pa—1(¥0)) n 21
Qzp = Qi — (2.55)
So(yotl) n=20

An alternative formula of Q,, can be derived, using (2.55) and (2.49).

(2n+1)yP (y) — nPy—; (y)

Now  Ppri(y) = oy} (2.56)
Substituting (2.56) into (2.55) we have:
47 (Pa—1(¥o) = YoPn(¥e)) n
an = an + (2.57)
~So(yotl) n=20

Note that for n = 0 the Q,, coefficient usually given in the literature

(Rapp, 1985a) as
Qz0 = So(1-Y¥o) (2.58)

corresponds to our Qzo + Wzo = —So(yot+l) + 2S5, = So(1l-yo)

Finally, the X, coefficients are

1 1 1
X2 = I_,S’(Y)P"(y)dy = I_IS(y)Pn(y)dy - Sof_an(y)dy or
_ZSO n=0
X2q = 10 n=1 (2.59)
2

n-1 na2




18

Now we are ready to give the final formulas for Meissl’s method. The

undulation is computed as

-~

N, = 2 If S,(cosy)igTde + =& ¥ Q,.igs (2.60)
2 4"7 J 2 27 nZo 2n n .
c

‘with the components of the global mean square error from (2.28) - (2.31)

and (2.53), (2.55), (2.59):

ﬁg,l = [z—s]zngl (X2n — Q2p) 320, (propagation error) (2.61)
oN3 , = [§§]2HEHT+I[;%T - Q,,,}zcn (discretion error) (2.62)
53,5 = () [ £, andCs + (@zo + Wao)?0Ca]

(commission error) (2.63)
?s'ﬁg,. = [2—31 n§n+1Q§"C" (ommission error) (2.64)

The total global RMS error is

SN: = (ON3,, + 6N3,, + ON3,, + ONE )%

PN
N
2]
(4]

—

Expressions (2.61), (2.62), (2.63), (2.64) and (2.65) are equivalent to the
expressions for the global mean square undulation error of Meissl's
method given in (Engelis, et al.,, 1985a) if we are to start the summations

from two instead of zero.

2.3 The New Methods

2.3.1 Molodenskii’s Method

We will now present the Molodenskii’s modification to the original
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Stokes’ formula (2.1) (Jekeli, 1980, p. 22). The function of ¥, W;(cosy)

that is to be subtracted from the Stokes’ function S{cosy) is

W, (cosy) = kgo 2k;1 W;,kPk(cos@) (2.66)

Using (2.2) we take

Zkgl Ws Py (coSY) (2.67)

x
lev1a1
©

Ssy(cosy) = S(cosy) -

The Fourier coefficients Xa,, Wi,, and Q;, can be immediately computed.

Rewritting (2.67) as

Sy(cosy) = ngo 2n-:02-1 X3,P, (cosy) - (2.68)
with
~Wa, 0 €é€nsl
Koo = | 2 - Way 2410 6h (2.69)
;%T nd<n<e

we obtain the Fourier coefficients X,,.

Furthermore, from (2.66) it is obvious that W3, (0 € n & n) are the

Fourier coefficients of W,(cosy). Finally, since

. qo0 0éysy
Sa(cosy) = | Si(cosy) oyl (2.70)

we take (y = cosy, yo = cosy,)

Qun = [ BsIPady = [* 8, (nPa()ay =

= [ - & L w,p ())Pa(ndy, or
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2k+1 y
5 Wi ["Pu(IP(r)dy (2.71)

Qspn = Qi —

et

k=0

The definite integrals from -1 to y, of the product of two Legendre

polynomials P.(y):P,(y) are analytically given in (ibid, p. 10).

if
ern = [P (®) Paly)dy £ ma 0 (2.72)
Then
ern = Ty GamrDy [PPr (Vo)Pam1 (Vo) = rPa(¥o)Pros (¥o)
+ Yo(r-n)P,(¥o)Pr(yo)] r#nr,n>0 (2.73)
Also, er,0 = 37 [Prts(¥o)Pros(¥o)] r>0 (2.74)
€00 =1+ ¥o (2.75)

€r,r < 2r-]!:1 [(zr_l)er—t,r-—l + ¥o(P2(¥o) + Pl-1(¥o)) = 2P (¥o)Pr—1(¥o)]

r>90 (2.76)

Formulas (2.73) - (2.76) are very useful for the numerical computation of
er., coefficients and can very easily be programmed. Notice that from

(2.72) it holds

enr (2.77)

Inserting (2.72) into (2.71) we have the truncation coefficients Qa,:

n
an = an - z 2 ngekn (2.78)
k=0

In Molodenskii’s method the function W,(y) is to be defined as the

"best" approximation to S(y) in the interval [-1, y,], by minimizing the
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norm of the difference:
Ig°[S(y) = ¥W3(y)]*dy — minimum (2.79)
-1 .

After condition (2.79), the W,, coefficients are computed (without the

derivations, which can be found in (ibid, pp. 29-31)), from

Wan= § ZEun, 0<én<h (2.80)
r—n
with
Ur = %' io zngl hpenQip 0O<£ré&n (2.81)
"-—
hen = (2ntD)k™T E [11)] [(il](l—k)i+1 0£n<r
izo
2 .
hre =507 K rao (2.82)

p=rmnl, q=r+n, k = cos’y-%

It also follows immediately from condition (2.79) that
Qi, =0 0£€£n<n (2.83)

The number n is the maximum number of "proper" harmonics that are
removed from the Stokes’ function (see eq. (2.67)). For reasons that

will be explained in Chapter 3, we choose
n <M (2.84)
Then, in Molodenskii’s method the undulation is computed as (ibid, eq.

(95)):

Noo= B AgT R
N3 = 4”7 J.i Sg(COS‘#’)Ag de + E
Cc

11331

Wsnhgs + &= T
° BnAgn + 27 g

_ Qaghggy (2.85)
n ntl
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The components of the global mean square error from (2.28) - (2.31) and

(2.69), (2.71), (2.80), and (2.83) are:

The total

6Ny =

H

[52]'[n§° (Xan = Wap)?aq + E1

.k

[ 3e K]

n=n;+1 [;% - an] 20"

[§§]=[HEOW§n6cn + g- anocn]

n=n+1

= [ﬁ%) znz.mqg aCn

global RMS error is

(6N3,, + 6N3 , + ON3 , + 6NZ ,)%

2.3.2 Modified_ S joberg’s Method

[;E_l - an] zcrn]

{propagation error)

(discretion error)

(commission error)

(ommission error)

Proceeding as in Molodenskii’s method, we have that

We(cosy) =

is the function to be subtracted from the Stokes’

2k-£1 Wa Py (cosy)

x
fiev13
o

Then
r-| 2 +
Se(cony) = S(cosy) - § ZGL W, Py (cosy)
or S,(cosy) = I 2ntl XanPn (cosy)
n=o0 2
with
_wln 0€ns+el
X4“= n?_l"w‘n 2‘n‘l-l
% n<n<e

function

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)

(2.91)

S(cosy).

(2.92)

(2.93)

(2.94)
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Finally
_ 0 04y &y
Ss(cosy) = [ (2.95)
S.(cosy) Yo < ¥ & m
and
mT - 1 -
= J.-“S4(COS'¢)Pn(COS‘¢)d'¢ = I_ls‘(Y)P"(Y)dy =
= fij.(y)Pn(y)dy = fff(S(y) - g Zkgl War Py (¥))P,(y)dy or
Qo = Qup - § Zk§1w4kekn (2.96)
k=0

with e, from (2.73) - (2.76).

Now, in general, Q4, * 0, O € n € n, but Wy, = 0 for n < n ¢ M
since we again choose (see Chapter 3) n < M. Using the general

formulation discussed in Section 2.1, we compute the undulation
according to (eq. (2.14))

-~

R n R R M ~
Ry = - lf Sa(cosy)igTda + 57 z (Qun + Waoddag + o8 1 Quodes
c

Y n=nt1

(2.97)

with the components of the global mean square error from (2.28) -

O
-4
&N
-
i

- [Eg]z["go(x‘" C Qu)?e, + n§;+1 nfl Qun) “0n]

(propagation error) (2.98)

6N3,, = [27] nEa, +1[ Q4n] C, (discretion error) (2.99)
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__Bzﬁ M
6N2s3 - [27] [n20(94n + Wen)26C, +n§;+lqinacn]

{(commission error) (2.100)
N2 , = [—B] E Q2,.C, (ommision error) (2.101)
! 2y) pzmhr
and the total mean square error:
6N = ON3,, + ONi , + ON3 5 + ON3 , (2.102)

In Meissl’s method care is taken for the kernel é,(cosq&) to be
continuous at ¥ = 4,; in Molodenskii’s method the norm of the
approximation of S(cosy) through W,(cosy) is minimized (eq. (2.79)). In
this method, the brilliant idea, due to Sjoberg (1986a) to directly

minimize the expression of the mean square error (2.102) is utilized:

N2 — minimum (2.103)
To minimize (2.102) the partials are to be taken with respect to (up till

now) arbitrary coefficients W,,:

N2
3§%§tl =0 k=01, ..., B (2.104)

Notice that the coefficients Q., are also linear functions of W,, through
eq. (2.96). The algebra will be given in Appendix A. We give the final
result of the equations (2.104). They are equivalent to the linear

system:

e
-]

aktW4t = hk; k = 0, 1, eeey I (2.105)
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where ap, = ayy = (o + 6C )6kt — -ZL;-I- ere (¢ + 6Cy)
+1
- &t—z_ €xt (d’k + GCk)
2k+1 2t+1 [ M
+ Bl 24t [ngoetnekn(an + 6C,)
nT o
+ 37 etneun(on + Co) + I e¢nern(Ca + Co)] (2.106)
n=M+1 n"—'nT+1
2k+1 [ M
and by = 251 [ § eyn[Qinlon + 6C,) = Kinon]
n=0
ny
+ Z ekn[oln(dn + Cn) - X!ndn]
n=M+1
+ z _Hekn[an(Cn + Cp) - Xlndn]] + Xiyox — Quiylay + 6Cy)

n
T (2.107)

0 k=t

Kroenecker’s 6,y is defined as &4 = {1 k=t

The computation of W,, coefficients is achieved by inverting

ooooooo

] and multiplying the result by

DTS S -
the vector H = [h, ... h, ... hj]T:
[(Wey Wez ... Wez]T = AT'H (2.108)

Once the W,, coefficients are computed, the X, coefficients are
computed backwards through (2.94), the Q,, through (2.96) and finally
the undulation through (2.97) and it’s global mean square error

components through (2.98) - (2.102).




CHAPTER III

ERROR ANALYSIS

In this chapter the numerical application of the formulas giving the
global RMS undulation error for all the four methods will be examined:
Formulas (2.41) - (2.44) for Stokes’ method; (2.61) - (2.64) for Meissl’s
method; (2.85) - (2.89) for Molodenskii’s method; (2.98) - (2.102) for
modified Sjéberg’s method. Irrespectively of which method will be the
most precise (i.e. will give the smallest global RMS undulation error), all

the methods will be considered for the actual geoid computations.

It is clear by examining the global RMS error formulas. for all the
methods discussed in the previous chapter that we need models for the
error anomaly degree variances due to the errors of both the 0°x6°
terrestrial gravity anomalies (¢,) and the potential coefficients (6C,) to
numerically apply the formulas. Also, the anomaly degree variances (C,)
are required, and they are modeled as discussed before (eq. (2.18))

according to the Tscherning-Rapp model.

The anomaly degree wvariances are used to compute the ommission
error for the degrees M<(n<» and the discretion error for degree ni<{n<e.
We here list some values of the anomaly degree variances C, of the
Tscherning-Rapp model (Table 1), for high degrees.

26
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Table 1. Anomaly Degree Variances of the Tscherning-Rapp Model (mgal?).

n C,(mgal?)
180 1.955
200 1.766
300 1.173
400 0.862
500 0.671

2000 0.098
5000 0.012

Tests using different values of A are later presented in this chapter.

The error anomaly degree variances due to erroneous potential
coefficients are taken from the errors 6(-3,,,,,, Génm of the fully normalized
potential coefficients of the OSU86D solution (Rapp and Cruz, 1986a).
The above set of potential coefficients does not contain any zero or first
order coefficients, and thus the summation when computing the

commission error, will start from 2
n - -
6Ch = 723(n-1)2 Y (6Copm? + 65,,2) 26énéM (3.1)
m=0

Notice that in writing (3.1) we assume that the errors in the potential

coefficients are uncorrelated.

The numerical values of 6C, for some degrees are listed in Table 2.
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Table 2. Error Anomaly Degree Variances due to the OSU86D Potential
Coefficient Errors (mgal?).

n 6C, (mgal?)

2 0.644-10"¢
3 0.745-1074
4 0.296-107°

5 0.256-1072
10 0.568-107?

20 0.274
100 0.522
150 0.936
180 1.300

For the error anomaly degree variances due to the errors in the 6°x6°
terrestrial anomalies, various error models were examined. For all the
models we assumed Ag] = Ag] = 0, and thus for the computation of the

propagation error (eq. (2.28)) the summation will again start from 2.

MODEL A
The error anomaly degree variances are taken from the numerical
integration of the error covariance function C (y¥) of the 6'x10’ free-air

anomalies in Europe (Weber and Wenzel, 1982).

2n+1 Ymax .
an = B [T oW, Vo) Pa(cos¥)simydy  2énény (3.2)
n .w_—_o
where:
Bn Pellinen smoothing factors for a spherical cap equivalent
to a 6’x10’ block
Ce(¥) = 22e~*¥" + 3 mgal? error covariance function
v spherical separation in degrees
Ymax maximum distance of integration = 10°

dy step of integration = 1°
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h(¥,¥nax)= %— [1 + cos —ZL] Hanning smoothing window, to smooth out

the side lobes produced by the limited length (10°) of the
error covariance function

ny 1800 maximum degree at the anomaly error degree variances
The above error covariance function implies an error variance C,(0) = 25
mgal? and a correlation length A = 0.°21. The correlation length A is
defined as:

C.(N) = %C.(0)

MODEL B
Another model proposed by Sjdéberg (1986b) is based on the

following form of the error covariance function:

1
(1-2ucosy+u?) =

C.(¢¥) = c¢(1l-u) [ 1 - ucos¢] (3.3)

where the coefficients u and ¢ are computed by specifying the variance
C.(0) and the correlation length A. Then the error degree variances are
given by the closed formula:

g, = c(l-u)un 24n<e (3.4)

For this form three separate sets of C,(0) and A\ were tested:

MODEL B.1  C,(0) = 25 mgal?, A = 0.°21 (to comply with MODEL A)
MODEL B.2 C.(0) = 25 mgal?, A = 0.°1
MODEL B.3 C,(0) = 25 mgal?, A = 1.°0

The latter two models (B.2 and B.3) check the sensitivity of the global

RMS undulation error with respect to the correlation length of the error

covariance function.
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MODEL _C
In case that we assume uncorrelated errors of "a" mgal between the
0°x0° anomalies, then the error anomaly degree variances can be given

by (Wichiencharoen, 1984):
o, = (2n+1) 2= g2 24nén (3.5)
n 4 T .

where 0 is the blocksize in radians;

ny = 180/6° 0° being the blocksize in degrees. For tflis model we
used 6° = 2/60 (2’°x2’ anomalies).

Notice that the error degree variances given in (3.5) increase linearly
with the degree. This does not happen with any of the models A, B.l,
B.2, B.3. Numerical values of the error anomaly degree variances implied

by models A, B.1, B.2, B.3 and C are listed in Table 3.

Table 3. Error Anomaly Degree Variances (in mgal?) Implied by Models A,
Bll’ B‘z’ BI3’ Co

MODEL

n A B.1 B.2 B.3 C
2| 0.034 0.053 0.025 0.257 3.38-107¢
31 0.048 0.053 0.025 0.255 4.73-107¢
4 | 0.061 0.053 0.025 0.252 6.05:10"¢
5| 0.073 0.053 0.025 0.250 7.40-107¢
10 | 0.121 0.052 0.025 0.237 1.42-1073
20 | 0.133 0.051 0.025 0.214 2.75-1073
100 | 0.034 0.043 0.023 0.093 1.35-107*
1000 | 0.010 0.006 0.009 0.837-1073 1.35-1073
1500 { 0.015 0.002 0.006 0.472-1077 2.02-1073
1800 { 0.037 0.001 0.004 0.211-107° 2.43-1073
5000 | —— 0.128-1072 0.162-1073 0.861-10723 | 6.73:1073

For comparison purposes for all the four methods we will initially

use Model A. Then, models B.l, B.2, B.3, C will be tested using the
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modified Sjoberg’s method only.

The choice of n (see Chapter 2) to be less than the maximum degree
of the potential coefficients used is discussed by Jekeli (1980, p. 33, fig.
10). Using the Molodenskii’s method Jekeli showed that one obtains the
lowest global RMS undulation error when n < M. However the above
conclusion is based on errorless gravity data:

o, = 0 24n<w (3.6)
Sjoberg (1986a, p. 14, fig. 2) also shows that the lowest global RMS
undulation error is achieved if a "hybrid" solution is used with n = 20,
M = 180. Finally, the choice n = M, in the case of the modified
Sjoberg’s method with M = 180, will require the inversion of a symmetric
matrix (see eq. (2.108)) of dimension 180x180 and the computation effort
does not pay back in terms of gain in precision, as it will be shown

later in this chapter.

Figure 1 shows the global RMS undulation error for all the four
methods for capsizes 0°, 1°, ... , 10°. The cases n = M = 20 are also
shown for the Molodenskii’s and modified Sjoberg’s methods, which for
Yo < 4° have large (greater than 70 cm) error due to the large
ommission error. (For the rest of this discussion, when we use the
terms "Molodenskii’s method", or "modified SjSberg’s method" we will

refer to the cases n = 20, M = 180, unless otherwise stated.)

The gain in precision for all the capsizes when the modified

Sjoberg’s method is used is clear. This results from the fact that the
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Figure 1. Global RMS Error in Undulation (in cm) for the Four Methods
Using Model A for the Terrestrial Anomaly Errors and the
OSU86D Potential Coefficient Errors.
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modified Sjoberg’s method minimizes the global mean square undulation
error itself (condition (2.103)). However, this improvement in precision
for the capsize of 2° is on the order of 5 cm and ma); or may not be
realized when actual geoid computations will be carried out using the
above capsize. For capsizes 0°6y,€3° the Molodenskii’s method is better
than the Meissl’s method. For capsizes 3°éy,€6° the reverse happens.
Then, for capsizes 6°¥,410° the Molodenskii’'s method takes again the
advantage. Stokes’ method compares well with the other methods for
0°4y,%€2°. For larger capsizes the global RMS error increases faster for
Stokes’ method than for any other method. This is due to the fact that
" the propagation error increases faster for Stokes’ method than for any
other method as the capsize increases. Notice also from the above
diagram that increasing the capsize does not substantially decrease the
error in the case of the modified Sjoberg’s method, which is welcome

when actual geoid computations are pex"formed.

In case that we assume 6o = 03 = 6Cy = 0 (see also Chapter 10), the
modified Sjoberg’s method results in a singular matrix A to be inverted
for Yo = 0°. Thia follows immediately from the orthogonality of the

Legendre’s polynomials: (y, = cos0 = 1)

o

ern = | Pr(¥IPa(y)dy = ren 3.7)

Then the elements of matrix A from eq. (2.106) will be:

I

ayr =0 for t 2 r; age = @gy = 830 = 0
and matrix A has two rows equal to zero. The value of the global RMS

error for this case can be computed using the values of the commission
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and omission error of the OSU86D set. (The propagation and the
discretion error are zero). Also, matrix A is near-singular for the other
nonzero capsizes (see also Colombo’s method discussed in (Jekeli, 1980,
p. 38), where the condition 6N, = O results in an ill-conditioned system
-of equations). Further investigation is required that will result in some
type of regularization of matrix A. In Sjoberg’s method the minimization
of 6—1:13 is equivalent to the minimization of the weighted sum of the

residuals VTPV = min in a traditional least squares adjustment. See also

(Wenzel, 1982).

The individual error components of the modified Sjoberg’s method
are shown in Figure 2, and it can be seen that the major contibution to
the error budget comes from the propagation and the commission error
which for vy, = 3° are on the order of 45 cm and 40 cm respectively.
The omission and the discretion error are very small (less than 8 cm for

Yo ¢ 2°).

We then tested models A-C for the error anomaly degree variances
using the modified Sjoberg’s method. For these tests and for the rest
of this discussion the capsize of 2° has been used, unless otherwise
stated. The global RMS undulation errors due to the above models are

shown in Table 4:
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Table 4. Global RMS Undulation Error (in cm) for the Modified Sjoberg’s
Method Using Different s,-models for Anomaly Errors.

MODEL | 6N, (cm)
A 60
B.1| 58
B.2 | 53
B.3| 72
¢ 35

We see by comparing model A and B.l1 that for the same error
variance C,(0) and correlation length A, the form of the error covariance
function does not give any significant difference for the total error
budget. But the correlation length plays an important role and it can
increase the error from 52.70 cm (A = 0.°1) to 72.10 ecm (A = 1°).
Finally, assuming uncorrelated errors, the total error in undulation is

reduced to 35.27 cm which is the most optimistic case.

The choice of the error variance C, {(0) is also a very important
factor for the modified Sjoberg’s method. To demonstrate this we will
show results of actuasl geocid computations in M=aui Island (located in the
vicinity of Hawaii). Using eq. (2.97) with n = 20, M = 180 we computed
the geoid undulation for station 7210 in Maui from 2°x2° terrestrial and
altimetric anomalies and the OSU86F set of potential coefficients. For
more details see the next chapters. In Table 5 with N, we denote the
first term in (2.97) (cap contribution) and with Np we denote the last
two terms in (2.97) (i.e. contribution from the outer zone). Then N = N,

+ Npl
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Table 5. Actual Geoid Computations in Maui (Station 7210) with the
Modified Sjoberg’s Method Using Different Error Variances.

C,(0) (mgal?
25 10 625
Ne (m) 17.80 19.17 7.38
N, (m) 0.86 -0.48 9.43
N (m) 18.66 18.69 16.81

Results of Table 5 are to be compared with the value of 20.49 m for
the undulation of the station (See chapter 4). Notice that the smaller
the error variance, the larger weight will be given to the terrestrial
gravity data. For the pessimistic selection of the C,(0) to be 625 mgal?,
the value of the undulation shows a discrepancy of ~3.50 m with the
value of 20.49 m, whereas for the other two selections of C,(0) the

discrepancy is ~1.80 m.

Generally, each of the four methods we examine assigns different
weights to the terrestrial gravity data and to the potential coefficients.
To see this, we can rewrite (2.14) as

B
4y

Ny [f] siccosmiaras - [[ s, (cosmieTae] « £ T (asuewinit,

o a—o.

n -~ M "
2 [ 2:T(xin_Qin)AgIn + ; (Qin+win)A§n]
2y Zo

n=o0 n
R nT ~ M ~c
= 5= [ $'p,18e1 + I Pe.AE.) (3.8)
7Y n=0 n=0

Thus, the weights that are used for the terrestrial data are:

Pi; — Xin_Qin

f’irTn = T =
PiatPis  XintWig

O<n<ny (3.9)

For the potential coefficients they are:
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P = —-E-LL = _p.T = .Q_Lnﬂt.n
Pig = priig = 1 - Pul = e Ocnam (3.10)

Equations (3.9) and (3.10), in the case of Stokes’ method (iz=1l),. are
valid for n>2 and for Meissl’s method (i=2) for n#*l, so that the
denominators of (3.9) and (3.10) do not become zero. The weights 15“7,,
f’iﬁ for Stokes’ method and P,], 15,3 for Meissl’s method are determined
independently of the errors of 3; and Rg. (They are only functions of
the capsize vY,). For the Molodehskii’s method 133,7, and 153,5, are
determined immediately after the numbers n and M are given, but, again,
without any refinement that would account for errors in Z\;, 33 Only
the modified Sjoberg’s method gives weights that take into account the
errors in Z; (through ¢,) and in Zg (through 6C,). This is clearly
shown in Table 5. The selection of the proper model for the anomaly
degree variances however does not play an important role for the
modified Sjoberg’s method, since this model is used to model the
behavior of the anomaly spherical harmonics of high degrees only (n >
M for the omission error and n > n;y for the discretion error). To see
this we list in Table 6 the various global RMS undulation errors for the
modified Sjoberg’s method, when different values of A for the C, model
(see eq. (2.18)) are used:

Table 6. Influence of the A-value of the C, Model on the Global RMS
Error for the Modified Sj6berg’s Method.

A (mgal?) [|8N, (cm
80.00 59
425,28 60

10000.00 65
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The effect of different S-values (see eq. (2.18)) is expected to be
neglibible for 6N,, but separate tests have not been carried out to show

this.

We now examine the glob-al RMS undulation error for the
Molodenskii’s and modified Sjéberg’s method in case that a higher
degree of expansion M is used for the potential coefficients. Table 7
clearly shows that increasing the degree of expansion from M = 180 to M
= 250 the global RMS error remains essentially the same.

Table 7. Global RMS Undulation Error (in cm) for Molodenskii’s and
Modified Sjoberg’s Methods Using Two Different Degrees of

Expansions.
6N (cm)
METHOD M=180 | M = 250
Molodenskii’s 61 61
Modified Sjoberg’s 60 60

Finally, different values of n (number of harmonics in W;(y) and
W.(¥)) influence the global RMS error only in the case of Molodenskii’s
method as Table 8 shows (M = 180).

Table 8. Global RMS Undulation Error (in cm) for Molodenskii's and
Modified Sj6berg’s Method Using Various Numbers of Harmonics

in Wi ('¢) .
4 5N A
5 63 61
20 61 60
40 62 60
180 71 60
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Table 8 shows that the combination n = 20, M = 180 gives the
smallest global RMS error in the undulation in the case of Molodenskii’s
method. This result is in analogy with (Jekeli, 1980, p. 33, fig. 10).
The improvement we obtain in the case of the modified §joéberg’s method
(1 cm) is negligible and the computation effort much larger when we

increase n.

Summarizing, we see that the selection of the «, and 6C,, models is
critical for the modified Sjoberg’s method, whereas the C, model does
not play an important role. Although we can have a reasonable 6C,
model using eq. (3.1), it i8 very difficult to have a reasonable ¢, model
for the terrestrial gravity anomalies, because for the majority of the
cases, either

a) No error estimates are available, or

b) Unrealistic error estimates are given.

Even if reasonable error estimates were available for the given gravity
data, the algorithms to compute the error covariance function C,(¥)
and/or the corresponding ¢, model have not yet been developed
satisfactorily: The method of computing an error covariance function by
comparing two independent data bases for the same region (Weber and
Wenzel, 1982) suffers from the fact that two independent data sets are
rarely given for the same region since the gravity measurements are
usually made once within a broad time period. On the other hand, the
empirical error covariance function computation based on actual error
estimates will not give a unique solution due to the plus or minus sign

of the error estimates.
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Finally, the selected ¢, models are only approximate and the
assumption that they are wvalid everywhere on the earth is not
rigorously true. Also, the reference surface that is associated with
these models has been taken to be the sphere of radius R, or, in a first
approximation, the geoid. Changing the radius of the reference surface,
by several hundred meters, will cause a small change in the ¢, models
and such a change will not significantly affect the error analysis.
However from the theoretical point of view, it is critical to associate a

surface with the selected models.




CHAPTER IV

LASER STATIONS

The coordinate system that was selected as the consistent
coordinate system for defining the laser station coordinates was the SL6
system (Robbins et al.,, 1985). Although the laser station coordinates
were also given in the SL5.1AP system (Smith et al.,, 1985), we selected
the SL6 8ystem as the most recent one. Initially, the geodetic
coordinates ($,\,h) of 46 laser stations referred to the SL6 solution were
available from Robbins et al.,, (1985). The station number, name and
occupation of these stations are given in Table 9 (Alfano, 1986).
Stations 7907 in Peru and 7929 in Brasil were immediately excluded from
the list of the stations that we would finally use for geoid undulation
computations due to the lack of local terrestrial gravity information. We
thus retained 44 stations whose coordinates had to be transformed from
the SL6 reference ellipsoid (a, = 6378144.11 m; f = 1/298.255) to our
adopted reference ellipsoid (we will call it OSU GRS: Ohio State
University Geodetic Reference System) with parameters:

a, = 6378136.0 m

f = 1/298.257222101

(4.1)

GM = 398600.440 km3/sec?

@ = 729115-107'! rad/sec

The three last parameters in (4.1) are the same as the parameters

42
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Table 9. Laser Stations Occupation

NUMBER NAME OCCUPATION
7051 QUILAS Quincy, California
7109 QUILAS Quincy, California
7886 QUILAS Quincy, California
7062 SANDIE | Otay Mountain, San Diego, California
7110 MONLAS Mount Laguna, California
7082 BEARLK | Bear Lake, Utah
7084 OVRLAS Owens Valley Radio Observatory, Big Pine, Calif.
7114 OVRLAS | Owens Valley Radio Observatory, Big Pine, Calif.
7085 GOLDLS | Goldstone, California
7115 GOLLAS | Goldstone, California
7086 FTDAVS McDonald Observatory, Fort Davis, Texas
7885 FORLAS | McDonald Observatory, Fort Davis, Texas
7112 PLALAS | Platteville, Colorado
7887 VANLAS Vandenberg Air Force Base, California
7888 HOPLAS | Mount Hopkins, Arizona
7921 HOPLAS Mount Hopkins, Arizona
7894 YUMLAS Yuma Proving Grounds, Arizona
7063 STALAS GORF, GSFC, Greenbelt, Maryland
7064 GSFCLS GORF, GSFC, Greenbelt, Maryland
7100 GSF100 GORF, GSFC, Greenbelt, Maryland
7101 GSF101 GORF, GSFC, Greenbelt, Maryland
7102 GSF102 GORF, GSFC, Greenbelt, Maryland
7103 GSF103 GORF, GSFC, Greenbelt, Maryland
7104 GSF104 GORF, GSFC, Greenbelt, Maryland
7105 GSF105 | GORF, GSFC, Greenbelt, Maryland
7069 RAMLAS | Patrick Air Force Base, Florida
7091 HAYLAS Haystack Observatory, Westford, Massachussets
7120 MUILAS Lure Observatory, Mount Haleakala, Maui, Hawaii
7210 MAULAS Lure Observatory, Mount Haleakala, Maui, Hawaii
7090 YARLAS Yarragadee, Australia
7943 ORRLAS Orroral Valley, Australia
7067 BDILAS Bermuda Island
7805 FINLAS § Metsahovi, Finland
7939 MATLAS Matera, Italy
7835 GRALAS Grasse, France
7840 RGOLAS Royal Greenwich Observatory, Great Britain
8833 KOOLAS | Kootwijk Observatory, Apeldoorn, Netherlands
7834 WETLAS | Wettzell, Federal Republic of Germany
7838 SHOLAS Simosato Hydrographic Observatory, Japan
7061 EASTER | Easter Island, Chile
7068 GRKLAS Grand Turk Island
7092 KWJLAS Kwajalein, Marshall Islands
7096 SAMLAS American Samoa
7121 HUANIL | Huahine, Society Island, French Polynesia
7907 ARELAS Arequipa, Peru
7929 NATLAS | Natal, Brazil
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of the GRS’80 reference ellipsoid. For the transformation of coordinates
we followed the scheme (Rapp, 1985c):

(¢,A,h)g16 — (x,¥,2) — (4,7, h)qgy

Provided the orthometric height H of the laser station is available
the value of the undulation N; of the station is the difference

Ny =h-H (4.2)
where h is the given ellipsoidal height. The reference point for the
ellipsoidal heights of the laser station was given either as a fixed
marker on the ground (Bench Mark) or as the intersection of the
horizontal and vertical axes of the laser instrument. Accordingly, the
reference point for the orthometric height should be the same, so that
the value of the undulation computed from equation (4.2) is meaningful
and useful for comparisons. In case that the referer.me point is not the
same then discrepancies up to 3.5 m (maximum vertical separation
between‘ the Bench Mark and the instrument’s axis) can occur. Using
the calibration information for the laser stations included in (Noll, 1983)
we transformed the orthometric heights to refer either to the fixed
marker or to the intersection of the instrument axis so that the
orthometric and the ellipsoidal height would have the same reference
point. This transformation was not possible for 11 stations because no
calibration data (i.e. North~East-Up coordinates of the intersection of the
instrument axis with respect to the fixed marker) was available for those
stations, For the above 11 stations the orthometric heights were taken
from (Alfano, 1986), and they are thought to refer to the intersection of

the instrument axes.
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In Table 10 we see the coordinates of the stations transformed to
the OSU GRS, the orthometric height, the reference point (BM = fixed
marker, IA = intersection of the laser instrument axes, UN = unknown)
and the undulation computed using eq. (4.2) for the 44 laser stations.
There are laser stations very close to each other (see for example the
coordinates of the stations 7051, 7109 and 7886 in Quincy, California, in
Table 10). It is useful to group those stations under a common name.
This is shown in Table 11, where the laser stations with distances less

than 100 km are grouped under the same name.

Table 11. Grouping the Laser Stations with Distances Less than 100 km

NAME STATIONS INCLUDED

QUI {7051,7109,7886

SAN |7062,7110

OVR |7084,7114.

GOL |7085,7115

FTD |7086,7885

HOP |[7888,7921

STA {7063,7064,7100,7101,7102,7103,7104,7105
HAW }7120,7210

The distribution of the 44 laser stations is shown in Figure 3 and
the distribution of the 11 laser stations with unknown height references
is shown in Figure 4. The accuracy of the undulation computed from
equation (4.2) has not been rigorously computed, since no accuracies

were available for the orthometric heights nor for the ellipsoidal

heights.




46

aE

RIGINAL FRIE 15
° ALITY

OF POOR QU

(aq

Laser Station Coordinates Referred to the OSU GRS

6378136.0 m, f = 1/298.257222101)

Table 10.

LONGITUDE

LATITUDE

SS.SSSS DD MM SS.SSSS ELL. M) ORT.{(M) REF UND{M)

NAME 0D MM

NUM

OONEN NN ROV LU ¢ 0000000000000 DWW <N — YO MDD RO~ N ORI
WD NNN O NOIRNN M RUWUNNINOI NN OID = =R WD M0 < 0w D —
WORONNWDWRONSINNOOINOMORNM—=MOD0 M MAILDWD IN 0— LD 00 < 00U N D LD ™ 0 00D
ININNTOINOOVINNDM~NITONVTRONNN~INTLIANMOOMOUNWD OO N —~WOM
............................................
NNONQNF OO DR (IR NMNMNOINONG D2 E O SN E NN N T
NI = NNNNENN—C) | NNOOMOOIOMOMONNMUNNM oot | MO —
(I S T O T T T T I R I I | L T T O T T T R O A A | ' 1

P 370 1o a ol s e i A 2 AP A Rl g = o bR g
OODHOODONOOOODIIDDMOMOMA M DM M =2 00D DD D et D e 00 0 00 4~
LD RbaRaEbababoao DR EnscRo kR RERELE
AN OO RE —~~ G O TN U R OO O L ~S oo B B~ G0 ©
OUNREN ROV~ OGNNTO~QINNNENO ORI O NE DD &0~ 0D
00 CO RN LN O 00 B et o=t =t OV 2 (D (V3 () — (O 10 = €D €0 0 &R LN 1D (I I LD 1D I (N 1) o=t L0 00 = =2 00 0D I (N OO
L T T T T O
MONNRUMMVNIMINWDNM M =tMIN——MMWOROOWANNE —~ &R T N D~ N
ONNNNARROVOD~MMENINNL VN NTHON OO ~WOEN  —m
Rt = RNOONNOARONDWDLC O M —mRan XN 0w —

T4 v vt ol vt ey =y o=y )yt ot ot NNy MM —

TN OV 00 & () 00 €0 00 L) =4 L0 &R »~ M LN 1N AD (N O N O N N (N (N LD AD (N = 4 00 0V A0 D ¢ & €0 1 I\ ) 00 I A0 WD
OOV LIRN~NNMOMOURANOSDROOUNNSTRDOOMIN = OWE R
SR IOV ON O = DLW — DT D IO O TR T = (0 0V O LD 60 T3 = A3 LD 0V AD (J 0% O) 00 —
NN RAMNMONNOANON—~—~MOABO—~ONRNNNER~OONIROVWLOON
P e e e e e e P e e e s e 4 s e e e s s e e e e
BRDOOMNMDWDO NN NI M N SR D~ 0000 & OO 00N 0V 0D ¢ W0 < (N 0 P (0 (0
VRAOMIONNVMNOUEDRMN SNt et et (OO WD L NNV N OV O IR e () 8 <
ReA—PON~~NROONNOMMN 1 RN e Ot |

e nanana®m
NN~ 0TV T MWD

% 3

3
EﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂHﬂﬂﬂﬂﬁﬂﬂﬂﬂﬂﬂﬂﬂﬂ
CIOYE0 —~ O CILD I 01 o= Q0O CO TR ™ IS LD LD LD LD (N WD €0 €0 €0 Oh O
NIL AR et = ONINRMIROOOONONNORERNN—~OWW—WONMONN
NORNN —~ONOVOVT < (M OVUD O DN DD N IN 60— (N ) =t LD 4t ot 01 (NI LD 00 00 ¢ 0N vt OO IR =t I 1N
....... © e e e s e e s et bt e s e e e e s e s e e s e e te e eas e
NONWONINNDONNWONODONDNNOOWRNYMOONNRWOUINODR MO R —
MMM NS NN =t et G G et et VNI LI I ISt Il IO

MM NN —N Mttt et S (N MY S NN SN SN MWD N~

OO MMO ==~ OMOIMNMMMMOECMEMINCIN T OVVRINNNR DN OVD
IOV T =t o 7 U UN N ) =7 <7 < Q0 G0 €0 00 00 00 (0 €0 I (0 &R &) ~— 2 OV (N ot —~MNOWVOR
LatL SR aUE UL SUL VAN QUL VT (VK XH SR K oUL N (NT N T U VR XX NY NF NT VT NTNT NPT R PPy N N O N

et UINRNNMS AN 2 L OOttt ettt DR RO NW O 8 e (N~ DR O~ RO
MONNURDOVONLTORND—=NWVEOLEONNT ~VHONMON=LRNWNNOWOO ~INRW NSO
WO —INNOUNRNNONROVUIR ~ NNV N LD < 00 00 0 I LD LD 00 0 B LD () I vt LD WD €0 — IN
NONRWANOWVNAONMONMMINOTME T —~ MO R~ W WM I QI 00 LN OIS I — D LD D
...... R T I L T R T T o

SORNORININAOARNOUORMNNOT SNSRI NDONCN —~OO NN

NANM N DN MENNWD Nttt et et et S NN TN~ D~ 2 OOOO
[ 1
DOOWMUMMINTRERM et WDttt et ettt At I N NN~ M OINNROLON M
LD LD ) LD LD ¢ ot O ot <F = () <F <2 LD - NI — O NN
] 1
9992217755535411?999999998259952303029371946
OOMMMIOIMOMOMOOTOOMOOMMOIMOMIMONYNNNOOWITINDLONN ——
[ 1 (]
NNULNXNNNNNNNNNNNVNNER~NMOTHBNNNONVBNVNNNBNVNENNN I
LI L ILL IO A LAV RAL(LCLLLCL L L LI L L
DI AN AC I AN TS d D DOttty S AV J VDS Jdddd S A DI I
e r SO o UL LU W=D~ ZdO0OFRONXDE L
202 OWSS00F 000D FNNINNNNAELDAI(EO~<C<EUOWTCIID
COOMNEROQUULLL>II>NUCCUCUUURII S >0RAuICeaINwiyT
SOWNRNTLSUNWOVINNND—EMIR~NO LN~ RN LD 0NN R ()< (0 = 00 A
ROV O~ NOVUVRERRRRPOAN ~NT LML OONNN
B OR-RE~E e~ OO R—~—~———e G- OOR NN TR e R —
L i o o o A A N N O N N N O N N O N N S N N N N A Y N NN NS NS




47

*S30UaI9j9y JyBTol (suotrjelsg

1) uMouyu) pue (SUOTIB}S E£E) UMOUY YITH ‘SUOTIBYS JOSBY yp 9Y} JO UOTINGLISIQ °E SInB1d
08t 091 Ohi oet 001 o8 09 oh 0c 0 ohe 02e 00€ pge o09¢ ohe 0ee ooe 081
06-
o] )
N 1T e l\/\‘.ﬂM o8-
——— | \.\ff{((l.l\}\l\.\l\',\ll W 3
= 0s-
\_\ (4 N‘B : Oh-
(13 ‘)‘-\\l
N : W /8] \; . 02-
RN ¢ A A\ B
Y 0’ Loy 980,
%Vlﬁ-&}. P \w JJ Yy a 0
M\.. ﬂ s q “- f
_“ ﬁ\ ﬂ\ﬂ. \/ 'S J
’ m\\tV b r\;ﬂ e.».J.W‘A\In\L J”” orae
' )J..l.\ ™ :P 302 )
P N L s - il § - oh
\Mi\ . b MU. 8 BME muL nm@ﬁo‘@@ ~_.“--ﬂ.. i
. wor @B & W .
BEaE Cae || N,
Y — v))\ldnAnm.uI ; R ﬁ s N g ‘A
asnmpES YR TR e
= o e == S o8
: : 06




48

‘BOJUSIBJOY 1YBIGH UMOUNU() Y)IM SUOIR|S J088] [[ 9y} JO uonnquIsiq ‘p eanSig

081 091 ohi ocli 6ol 08 09 Oh 02 0 Ohe 0ce 00€ o8e 092 Ohe 0ce 0oée 081
06-
. o —
— og-
2] W }/Wmmriw b~
] \.\)’lr(‘l\./s.\l\xll.ll\
- 09-

m.»% a )ww “lon-
Y _/ -

02-

fp
J\ Bl 4.
K

n\_

s - P o T N
w\(WU “ ~ oc...M w\“@.ﬂm ww”Q = VD./IHWJ‘/);J\ = : dm%\mﬂ\ 09
. R o e A Y S YRS £ o .

06

UALITY

PRGE 8
OF POOR Q

ORIGINAL



CHAPTER V

GRAVITY DATA PROCESSING

5.1 Pre-processing of the Data

The terrestrial gravily sources available by region are listed in
Table 12 below (Ag = free-air gravity anomaly, Ag = mean Ag). .The
third column in Table 12 shows the number of laser stations in the

corresponding region.

Table 12. Gravity Sources Available by Region.

REGION SOURCE # of LASER STATIONS
UNITED STATES | Point Ag 27
BERMUDA Point Ag 1
AUSTRALIA Point Ag__ 2
EUROPE 6'x10" Ag 6
JAPAN 10°x10° Ag 1

The gravity sources in Australia, Europe, and Japan are discussed in
(Despotakis, 1986). The point gravity anomalies in the United States,
Hawaii and Bermuda have been received in 1983 from the National
Geodetic Survey; the 10°x10° mean anomalies are also described in
(Ganeko, 1982); and the 6°x10° mean anomalies are also described in
(Torge et al., 1983)., These gravity sources cover only 39 laser stations
as Table 12 indicates. For five (7061,7068,7092,7096,7121) oceanic stations

the adjusted GEOS-3 and SEASAT oceanic altimeter data (Liang, 1983)

49.
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was used. For these stations an approximate geoid undulation was
computed from the altimeter sea surface heights using a standard least
squares collocation method using procedures similar to (Rapp, 1985b).

Numerical details will be given in Chapter 8.

Based on the error analysis results (Chapter 3, Fig. 1) the capsize
for the cap contribution computations (first integral term in eq. (2.14))
was selected to be 2°. Thus, within a circie of radius 2° (with the
center of the circle at the laser station) sufficient gravity data had fo
exist. More precisely, within the above circle we had to have full
coverage of mean gravity anomalies so that the numerical integration of
equation (2.14) would be possible. The gravity anomaly 35 to be used in
(2.14) has to:
a) Refer to the reference formula of normal gravity implied by the
constants of the adopted reference ellipsoid (see Chapter 4, eq.
(4.1));

b) Be corrected for atmospheric effect;

c) If possible, to be corrected for the terrain efffect. The

undulation then has to be corrected for the indirect effect (see

Section 5.2).

All the given sources (Table 12) had their free-air anomalies
referred to the GRS’67 reference formula. The conversion from this
formula to the formula implied by the constants of the OSU GRS will be

derived if we take into account that:
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a
Ag1967 = Bobs ~ Y1967 * 3% h (5.1)
d
Agosu = €obs — Yosu + 3}1 h (5.2)

where Ag,9s7: free—air gravity anomaly referred to the GRS’67
Agosy : free—air gravity anomaly referred to the OSU GRS
Y1967 : normal gravity on the GRS’67 ellipsoid
Yosy - normal gravity on the OSU GRS ellipsoid

%% : free—air gradient of the normal gravity
h : elevation of the station

The quantities dy/3h-h and g,,, are the same for both systems. Thus,
subtracting (5.1) from (5.2):

Agosy = B€1967 + Y1967 — 7Yosu (5.3)
Knowing that (International Association of Geodesy, 1971) ‘

Y1967 = 978031.85(1 + a’sin?¢ + b sin?2¢) mgal (5.4)
with a” = 0.0053024 and b° = —-0.0000059,

we can write (Heiskannen and Moritz, 1967, egqs. (2-116) and (2.105a))
vosu = o (1- 2 m - =2 a1 + a'sin®e + bsin?20) (5.5)
assuming that a° and b’ will be the same as in (5.4) which is correct

for the decimal digits we give. We also have:

- w?a?b
GM

and a,f,GM,o from (4.1).
We then obtain

Yosuy = 978032.83(1 + a"sin?¢ + b’sin?2¢) mgal (5.6)
From (5.3), (5.4) and (5.6), we take:

Agosu = Agies7 + (978031.85 - 978032.83)(1 + 0.0053024sin?¢
- 0.0000059sin?2¢) mgal, or

Agosu = Ag1s67 — 0.98 mgal (5.7)
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Thus, from the anomalies referred to the GRS’67 reference formula, we
have to subtract 0.98 mgal, to convert them to the OSU GRS reference

formula.

The next step is to apply the atmospheric correction to (5.7)
considering the polynomial expansion of the atmospheric correction given
in Wichiencharoen (1982a):

&g, = 0.8658 — 9.727-107*-H + 3.482-1077-H? (5.8)
where H is the elevation of the station, and 6g,, in mgal, is the
atmospheric correction computed truncating (5.8) to the second term and
giving an approximate value H for the elevation of the station. Then
the free-air anomalies to be used in equation (2.14) were computed as:

.T\g = Aggsy + Oda (5.9)
The above procedure applied to both point and mean Ag given from the

various sources listed in Table 12.

To detérmine the coverage of the gravity anomalies surrounding the
laser stations, windows of A¢ = 5° in latitude and AA = INTEGER(5°/cosé¢)
+ 1° in longitude (¢: latitude of the laser station) centered at the laser
stations were used. Full coverage and mean anomalies (as it was the
case with the anomalies surrounding stations 7838 in Japan and 8833,
7834 in Europe) did not require any further process. Insufficient
coverage and mean anomalies (as it was the case with the anomalies
surrounding stations 7805,7939,7835 and 7840 in Europe) required that
we fill-in the gaps. For this purpose we used the OSU86F (Rapp and

Cruz, 1986b) potential coefficient set up to degree 360 to compute the
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missing Ag as the point Ag evaluated at the centers of the 6 x10° empty

cells through the formula:

Ag = (t;'_id :g:(n—l)[g] nmgo(é"mcosml + §,,,,,sinm)\)l->,,m(sin$) (5.10)

where: GM,a : the constants of the OSU GRS given in (4.1)
6‘,,,,,,§,,m: the fully normalized potential coefficients of the OSU86F
solution; the 6,0, 640 and 650 refer to the OSU GRS
f’nm(sinﬂ: the fully normalized associated Legendre functions; § is
the geocentric Iatitude of the computation point
r : the geocentric radius to the computation point
A : the longitude of the computation point.
An example of a case with insufficient coverage of the 6'x10° z-\—g is
shown in Figure 5 for station 7805 in Finland. The dote represent

available 6 x10° E and the dashes represent fill-in anomalies using the

OSUS8G6F field as described above.

The point gravity anomalies surrounding the laser stations in the
United States, Hawaii, Bermuda and Australia were transformed to 2" x2°
mean anomalies using interpolation techniques (collocation or weighted
average) that are discussed in Section 5.2. For the application of the
collocation method using the five closest points it is necessary that the
matrix (C,j + Dij) is non-singular (see Section 5.2, eq. (5.11)). If the
five closest points are very close to each other, which was the case for
most of the distributions of the given point anomalies, then the above
matrix becomes singular. To avoid this, a thinning procedure was

applied to the originally available point anomalies. This procedure was
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Figure 5. Example of Insufficient Coverage of the 6°x10° Ag

Surrounding Station 7805 _in Finland. Dots Represent
Originally Available 6°x10° Ag and Dashes Represent Fill-in
6°'x10° Ag Using the OSUS86F Potential Coefficient Set Up to
Degree 360.
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as follows: For each 2°x2° cell in which the whole area was subdivided;
one value, the one which was closest to the center of the 2°x2° cell was
kept. The thinned data set created this way was then examined to
ensure sufficient coverage. If the coverage was sufficient, the
prediction of the 2°x2° A_g- was done as discussed in Section 5.2. An
example of such coverage for station 7082 in Bea;' Lake, Utah is shown
on Figure 6. The dots represent the point anomalies of the thinned
data set. If the coverage was not sufficient (i.e. areas larger than
1°x1* were completely empty), then |

a) For coastal stations or stations on islands the 0.°125 x 0.°125
altimeter anomalies of the world data base described in (Rapp,
1985b) was used to fill-in the empty areas. Examples of this case
are shown in Figure 7 for a coastal station (station 7887 in
Vandenberg, California) and in Figure 8 for the stations 7120,7210
on the island of Maui. The dots represent point Ag.

b) For continental stations, for which no altimeter anomalies were
available, the fill-in anomalies were generated at the centers of
the missing 2°x2° cells using eq. (5.10) as described above.
Figure 9 illustrates an example of such a case for stations 7888,
and 7921 in Mount Hopkins, Arizona. The dots represent point
Ag.

After the fill-in procedures, the 2" x2° E were predicted as discussed in
Section 5.2, The thinning procedure was not applied to the data

surrounding station 7067 in Bermuda (see Section 5.3).
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Figure 6. Example of Sufficient Coverage of Point Ag Surrounding
Station 7082 in Bear Lake, Utah. The Dots Represent Point
Ag.
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Figure 7. Example of Insufficient Coverage of Point Ag at the Coastline
Station 7887 in Vandenberg, California. The Dots Represent
Point Ag.
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Figure 8. Example of Insufficient Coverage of Point Ag at the Two
Stations 7120, 7210 in the Vicinity of Hawaii. @ The Dots
Represent Point Ag.
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Figure 9. Example of Insufficient Coverage of Point Ag For the
Continental Stations 7888, 7921 on Mount Hopkins, Arizona.

The Dots Represent Point Ag.
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Some statistics rconcerning the terrestrial gravity data processing
are shown in Table 13. The firat column is the number or the name of
the region (in case of groups of stations within the same region, see
Chapter 4). The second column is the AN dimension selected for each
window surrounding the laser station. The third column shows the
number of point or mean Ag available for each region before ((1)) and
after ((2)) the thinning. If no thinning was applied to the data (e.g.
6°x10° A—g data) this column is left blank ("—"). The fourth column
represents the fill-in procedure chosen: A "—" means that no fill-in
anomalies were used; "P" means that the fill-in anomalies were taken
from the OSUB6F potential coefficient set and "A" means that the 0°.125
x 0°.125 altimeter anomalies were used to fill-in the gaps. The fifth
column gives the final gridded form (or equivalently: the blocksize of
the mean anomalies) in which the original data were transformed to for
the numerical integration. The sixth and seventh columns give the
variance and the arithmetic mean of the final mean anomalies over the

sample area.

For each grid cell the anomaly .was computed from (5.10) using the
OSU86F potential coefficients up to degree 180 and then the arithmetic
mean over the sample area of those anomalies was computed. This mean
is shown in column eight. Finally, column nine gives the mean elevation

that was used for each particular window for the atmospheric effect

computation through equation (5.8).




Table 13.

Information
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Concerning the Terrestrial Gravity Data
Processing.
# OR AN # OF A¢g OR Ag|FILL|GRIDDED VAR X X H
NAME| (Degs) [ (1) _| (2) | IN | FORM |[mgal?] |[mgal] |(mgal] | [m]
Qul 6 43915 13531 | — | 2°%x2° 1902.29] 7.93 6.13 | 500
SAN 6 62506 |103569 | P 2°x2° 1231.22]-11.21 |- 9.71 | 500
70821 7 18654 | 9882 | — | 2°x2° 1901.87| 5.55 | 16.26 {1000
OVR 6 39966 114081 | — | 2'x2° 2191.67f 2.84 2.01 | 700
GOL 6 52428 114496 | — | 2"x2° 2288.04)|—- 6.32 |- 5.70 | 700
FTD 6 12166 | 5961 | — | 2"x2° 518.839}—- 0.38 4.58 1000
7112 7 26953 |11150 | — | 2'x2° 1353.25| 16.75 | 16.53 |1000
7887 7 96744 (14345 | A 2°x2° 1462.18|-13.6 |-14.15 | 500
HOP 6 13343 | 5447 | P 2°x2° 435.85|- 9.07 |- 7.08 {1000
7894| 6 23765 | 7296 | P 2'x2° 849.12|-10.94 |~ 7.28 | 100
STA 6 29561 (11705 | — | 2"'x2° 513.82}- 3.21 {~ 1.09 | 300
7069] 5 43186 | 5986 | A 2'x2° 415.87| 5.57 2.79 | 100
7091 7 31095 110357 | A 2°x2° 336.75| 0.89 2.84 | 100
HAW 5 715 458 | A 2'x2° 110802.81) 25.30 | 23.79 | 100
7067| 6 15731 —_ A 2'x2° 705.18{-11.00 }-11.33 0
78051 9 1859 —_ P 6" x10° 293.95{-15.95 }|-15.71 | 500
7939| 7 1886 —_ P 6°x10°| 2927.86| 15.33 | 15.39 { 500
7835| 6 1747 —_ P 6'x10° | 2429.60f 9.29 8.89 |1000
7840 7 1804 —_ P 6" x10° 128.03|~ 4.16 |- 1.87 | 300
8833 8 2400 — — | 6"x10° 344.54|- 0.68 1.81 | 100
7834 8 2400 —_— — | 6"x10° 686.791 21.91 | 21.32 | 300
7838| 6 1080 —_ — |10°x10°{ 1550.13] 22.87 | 25.42 —
7090 6 11835 | 4091 | A 2°x2° 920.581-11.85 {-12.75 | 100
7943 6 9804 | 4730 | A 2°x2° 1645.25] 14.01 | 17.33 | 500
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Some blunders (e.g. point anomalies of 1700 mgals) were found for
some regions in the western United States, but they were easily
removed by applying an editing method (i.e. delete the values of the
point anomalies if they are outside certain specified limits). Thus the
conclusion is that editing of the data is necessary, especially when we
deal with large amounts of data, to avoid any blunders that the data

may contain.

5.2 Gravity Predictions

For the transformation of the randomly distributed data points (see
Figure 9 for example) into a gridded form of 2°x2° rg_, predictions of
the 2'x2° EE had to be carried out based on the thinned data covering -,
the areas surrounding the laser stations and merged whenever
necessary with either ‘the altimeter data or the OSU86F anomalies, as
discussed in the previous Section. Two basic types of prediction
methods were considered (Cruz, 1983):

a) Collocation method: The 2'x2° Ag were computed as the point Ag at

the centers of the 2°x2° cells based on the five closest Ag to the Ag to

be predicted as follows:

Al = Co5(Cyy + Dyy)"' (Mg, - Bg) + Ag (5.11)
where: 35 is the predicted point value at the center of the 2'x2° cell

(=2"x2° Ag)
Ag; is the 5x1 vector of the closest five anomalies to the

predicted point

g:

Ineam

Ag,/5
1
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D;; is a 5x5 diagonal matrix of the noise of the five data

points

Cpj = Cpy (¥): 1x5 covariance matrix between the prediction
point and the five data points

Cy3 = Cy;(¥): 5x5 variance covariance matrix between the five

data points
¥: spherical separation.

To compute matrices Cp JW’) and C; j(yz) the covariance function based on
the Tscherning-Rapp model for the anomaly degree variances (see eq.
(2.18)) scaled to reflect the variance of the thinned and/or merged point
data with the mean removed was used. Some test computations were
carried out using empirical covariance functions but this method is
computationally extremely expensive, due to the large number of data
involved (see Table 13), and thus was not considered for the final
predictions.

b) Bjerhammar method (ibid, p. 15): The 2°x2° E were computed as the

point Ag at the centers of the 2°x2° cells based on the five closest Ag

to the E to be predicted as follows:

~ L1 A s l ‘
9 E, £ 121 4

(5.12)
where: £; is the distance between the point to be predicted and the
data point i (power of the prediction = 1). The predictions were also
carried out using the inverse of the square of the distance as a weight
(power of prediction = 2):

1=1 2§/ (=, #3% (5.13)
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Figure 10. Gravity Predictions in the Vicinity of Hawaii Using the Five
Closest Points in A Collocation Method. The Grid Spacing is
2°x2° and the Contour Interval 25 mgal.
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Figure 11. Gravity Predictions in the Vicinity of Hawaii Using the Five
Closest Points and the Inverse of the Distance as Weight.
The Grid Spacing is 2°x2° and the Contour Interval 25 mgal.
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The following three Figures (10-12) illustrate predictions using the
three different formulas discussed above: (5.11), (5.12) and (5.13)
respectively, at the laser stations 7120, 7210 in the vicinity of Hawaii.

The contour interval is 25 mgal.

On Table 14 we can see the statistics of the differences between the

2°x2° mean anomalies predicted using the three different methods in the

above region.

Table 14. Statistics of the Differences Between the 2°x2° Mean Anomalies
Predicted Using: Equation (5.11) (A), Equation (5.12) (B) and
Equation (5.13) (C) for the Vicinity of Hawaii. (See Figures
10, 11, 12), Units are in mgal; Number of 2'x2° Ag Compared:

22500.

STATISTICS C-B C-A B-A
Mean Difference ~ 0.461-0.05 0.41
RMS Difference 2.38| 0.97 2.18
Standard Deviation Difference 2.34{ 0.97 2.14
Maximum Difference 18.41 8.32| 10.863
Minimum Difference -10.631-4.26]-18.41

From the comparisons of Table 14 we can conclude that there is no basic
difference between the three different prediction methods. Finally,

method b) with power of prediction = 2 (equation (5.13)) was chosen.

5.3 Gravity Predictions in the Bermuda Area

For the transformation of the 15731 available point gravity anomalies
surrounding the laser station 7067 in Bermuda island (Figure 13) a
different procedure than the one already -described for the data
surrounding the other laser stations was followed. This procedure used

is as follows:
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Figure 13. Location of the 15731 Originally Available Point Anomalies at
the Laser Station 7067 on the Island of Bermuda. The Dots
Represent Known Point Anomalies.
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First, the 0°.125 x 0°.125 altimeter anomalies were used to fill-in the
empty area bounded by the limits 33°20°<$£€35° and 30°<$£31°15° in
latitude and 292°€A<294° and 296°20°€A<298° in longitude. Then, the
(unthinned) terrestrial point anomalies within the window
31°15°<9£33°20° and 294°£A<296°20° were used together with the 0°.125 x
0°.125 anomalies to produce a merged data set. Applying equation (5.13)
to the merged data set we computed 2°x2° anomalies for the whole
region (30°<¢£35°, 292°4A<298°) except for the central window bounded
by the limits 32°<4£€32°.6 in latitude and 294°.8€\<295°.6 in longitude,
since the gap that exists within this window (see Figure 13) would give

unreliable estimates of the 2°x2° anomalies through equation (5.13).

For this central window the 2'x2° anomalies were computed from the-
terrestrial point anomalies only if their distance to the five closest
points £; was less than 3° for every i=1,2,3,4,5., If any of the distances
&;, i=1,2,3,4,5 was greater than or equal to 3° then the 2°x2° anomaly
was taken from a 2°x2° anomaly data set computed from 10360 Ohio State
adjusted GEOS-3/SEASAT altimeter sea surface heights (Liang, 1983) as
| described in Section 8.4. A total of 35 2°x2° anomalies filled the above

gap.

The 2'x2° anomaly data set computed as above was then used for

the computation of the geoid undulation of the laser station 7067.



70

5.4 Terrain Corrections-lhdirect Effect

As it already has been mentioned in Section 2.1, the derivation of
the Stokes’ equation (equation (2.1)) assumes that no masses external to
the geoid exist. This is clearly not true for the continents, and thus
the masses above the geoid have to either be removed from or shifted
to the geoid. This will result in certain corrections to be applied to the
computed undulations, known as terrain corrections. ' For reasons that
are discussed in (Heiskannen and Moritz, 1967, pp. 151-152) one of the
most advantageous methods to account for these terrain correction
computations is the Helmert’s second method of condensation (ibid, p.
145): The topography is condensed so as to form a surface layer on the
geoid. The masses are shifted along the local vertical and the total
mass (of the earth) remains numerically unchanged. This produces an
attraction change to the free-air anomalies, TC, a potential change V,-V,
of the topography which results to an indirect effect on the undulation,
6Ni, and a secondary indirect effect on the gravity anomalies (0.3086
6N;) (Wichiencharoen, 1982b). Assuming that the terrain corrections that
were given for the point anomalies of the continental United States were
computéd using the above Helmert’s secoﬁd method of condensation, (i.e.
they equal the TC term discussed above), the terrain-corrections and
the indirect effects were computed for the continental western United
States laser stations as follows: To the point free-air anomalies :&5 of
the thinned data sets (see Section 5.1) corrected due to the change of
the reference ellipsoid (eq. (5.7)) and the effect of the atmosphere (eq.
(5.9)), the terrain correction that was available was added:

Al = A} + TC (5.14)
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where K;Tc is the terrain-corrected anomaly

ST, is the anomaly of the thinned data sets

TC is the available terrain correction
Then using the thinned data set (corrected for terrain effects through
equation (5.14)) the 2°x2° predictions were carried out as described in
Section 5.2. This method has the disadvantage that for the missing
2°x2° values no rigorous terrain correction is computed but the terrain
correction and the value of the free-air anomaly are interpolated as a
whole from the 5 terrain-corrected anomalies closest to the missing
value. Then to the computed undulations using the terrain-correctd
gravity anomalies from equation (5.14) the corresponding indirect effect
has to be added. The various models for the indirect effect computation
are discussed in (ibid, p. 19). The simplest and computationally fastest
but certainly the less accurate model is the model represented by the
Grushinsky’s formula (ibid, eq. {44)):

= VA_VE = -‘H‘Gpﬁz
04 4

6Ny (5.15)

where 6N;: is the indirect effect on the undulation

Va ! potential of the actual topography

Ve ¢ potential of the condensed topography

G : the Newton’s gravitational constant

P ' the assumed density of the topographic masses (= 2.67
gr/cm3)

h : the mean elevation of the 1°x1° region surrounding the
lager station

¥y : the mean value of normal gravity (= 979800 mgal)
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Table 15 shows the number or the region name of the laser stations
of the western United States; the maximum terrain correction and the
arithmetic mean of the terrain correction that was computed from the
thinned data sets; the mean elevation h of the 1°x1° surrounding the
laser station; and the indirect effect to be added to equation (2.14) if

the anomalies KST, to be used in the first integral term of (2.14) are taken

from (5.14).

Table 15. Information Related to the Terrain Correction and Indirect
Effect for the Western United States Laser Stations.

NAME OR |TERRAIN CORRECTION (mgal)

NUMBER max mean h(m) 6N (m)
QUI 81.5 4,33 1673 -0.16
SAN 75.4 2.64 729 -0.03
7082 57.5 3.72 2012 -0.23
OVR 81.5 5.19 2363 -0.32
GOL 75.4 4.97 674 -0.03
FTD 59.4 0.99 - 1410 -0.11
7112 82.1 3.91 1520 -0.13
7887 75.7 3.49 100 ~-0.00
HOP 85.8 1.63 1411 -0.11
7894 74.7 1.97 122 -0.00

The secondary indirect effect on the anomalies (= 0.3086:6N;) was

neglected,




CHAPTER VI

ELLIPSOIDAL CORRECTIONS

Our derivations for the ellipgoidal corrections for all the four
methods given here follow similar lines as in (Rapp, 198la). A general
equation is given for all the four methods, and the ellipsoidal.
corrections for the traditional methods of Stokes’ and Meissl’s
modification result as two special cases of the above general equation,

as it will be shown later in this Chapter.

The general equation (2.3) that is equivalent to the original Stokes’
equation (2.1) is the geoid solution of the boundary wvalue problem and
is in spherical approximation. Thus the gravity anomaly Ag in (2.3)
should be substituted with the spherical part of the anomaly, Ag®, where

(Moritz, 1980, equation (49-21)):

Ag = Ago + eZAgl (6-1)
with Ag® = ] Agd (6.2)
n=o
Ag! = ) Agj (6.3)
n=o
o . D-1 18 . .
g} = 5~ I (ApmcosmA + BpnsSinmA)P,m(sind) (6.4)
m=0
Agl = % )":‘ (GppcosmA + HypsinmA )P, ,(siné) (6.5)
m=0
G m - A -2 A A +2’m
{H:m} Knm {B:—z::] + Apnm [B::] * HBnm {B:""Z,m} (6.86)
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k. = - 3(n—3) (n—m-1) (n—m) )
nm "~ 2(2n-3)(2n-1)
_ n3-3m3n-9n2-6m?-10n+9
Anm = T 302n+3) (2n-1) (6.7)
- _ (3n+5) (n+m+2) (n+m+1)
Ham = 2(2n+5) (2n+3) J
GM % (Coml — [Anm * ezK"m
T [%] {s"m} ) [Bnm + e’an} (6.8)
{§::} = 8p—2,m {g:::::} + bnm [g::} + Cn+2,m {g:::::} (6.9)
_ n(n-mtl) (n-mt+2)
8nm = T T (2n+1) (2n+3)
_ __n2-3m3+n _
Bam = (Zn¥3) (20-1) (6.10)
e = {otl) (otm) (nim-1)
nm = (2n+1)(2n-1) J

The "spherical" undulation from equation (2.3) is (ibid, equation
49-22):

R

Ny = g

{| si(cosy)ngods + Z%; [[ W, (cosv)agode (6.11)
g

-

The ellipsoidal form of the equation (2.3) is then (ibid, equation

(49-26)):
NE = N§ + &N (6.12)
with oN = e’[% - % sin?¢|N, (6.13)

No is an approximate value of the undulation which can be taken to be

the same for all methods, and ¢ is the geodetic latitude of the

computation point.

Equation (6.12) can be rewritten using (6.11) and (6.1) as




N§

75

” S;(cosy) (Ag-e?Ag' )do + 4—2-; ” W, (cosy)Ag®do + 6N
g [+ 2

il

=S
5=

4

c 0=0d¢

ij S, (cosy) (Ag-e?Ag' )do + —%; II S; (cosy)Ag®da

” W,; (cosy)Ag®do + 6N
o

il

4—1:7’- ﬂ S;(cosy)agds + ZIR; ” S;(cosy)Agoda + TLR;” W, (cosy)Agde

c [ o PN I 4

&N - %ﬁ; lj S, (cosy)Ag'da (6.14)

c

The first integral term of equation (6.14) is to be computed from the

terrestrial gravity data and the next three integral terms and 6N will be

computed from the given set of potential coefficients.

Thus (6.14) can be rewritten using equation (2.5):

N§

Choosing

N§

& ) scompian + 5 J] Ertcomnena

Te

— ” W, (cosy)Ag%do +. 8N - Re? ” S;(cosy)Ag'de
] / i 4"7 ) i\

g c

- R M R M
R J Si(cosy)d]ds + 57 I Quadgh + 5 I WinAgl + oN
a0 n=0 Y n=o

e [ sy(cospragrao (6.15)
-2

) Seme—

n < M (see Chapter 3), equation (6.15) can be written:

- R n R M
av— II Si(cos¢)A5da + §; Eo(an+Win)Agg + E; Z_+10inAgg + 6N

n= n=n
Ie

B[] sy (coswagrae (6.16)

9c
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Note that the harmonics Ag¢ given by (6.4) will correspond exactly to
Kgg of equation (2.14) if the geocentric latitude $ instead of the geodetic
latitude ¢ will be used as an argument for the associated Legendre
functions (Rapp, 1981la, equations (25, (26)). In this case, the

coefficients

(T} = (o) (6.17)

an
and (6.16) can be written (ﬁ‘ < M)

N§ = ZE—'; ” S,(cosv)ﬁgda + -2—3% Eo(Qin+Win)(n—1)[§]n

n-

Oc
n

+ 1 (ChmcosmA+S,,sinmA)P, ,(sind)

m=0

GM M a nn . .
+ Zry n§;+lqin(n—1)[;] mgo(CnmcosmA+SnmslnmA)P,,m(smﬁ)

R 2
+oN - 2= [[ si(cosvragrde (6.18)
dc
or
NE = N9 + 6N + 6N, (6.19)

where ﬁ? i8 the spherical part of the undulation computed for each of
the four methods as already discussed in Chapter 2. Also:

6N, = ~ %fs [] si(coswragrao (6.20)

Tc

We now evaluate the integral of equation (6.20)

6N,

n

- — II S;(cosy)Agide

2 ([ succommean - [ 5, compasid
(-2

g-a.
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= - %—,e::- [” S; (cosy)Agide — ” §1(COS‘¢')A81d"]
A o
= - f—:;e-r;- [ZnngoxinAE}; - ZﬂngooinAgl’l'l]

Re2 M
= - 55 L (Xa=Qua)be

2 M n
;—7 zo(Qin—Xin)mzo(Gnmcosm}d H,,sinm\ )P, (sind) (6.21)
n= =

Using equation (6.19), (6.20) and (6.21) we can write equation (6.18)

as:

O(Qin+w1n) (n-1) [%] "

ef
g
Hew3a )

<

N§ = 4—Rn-; ” S,(coswp)KgTda + 5

o n
. )'f', (CamCOSMA+S  osimmA )P, (sind)
m-0

GM M a nn ) . .
+ Zry n):_hQin(n-l)[;] mgo(C,,,,,cosm}\+snms1nm)\)an(s1n$)

-n
e2 M L . .
+ 5 L (QinXin) I (GppcosmA+H,,sinmA )P, (sind)
Y n=o m=0

+ e? ;1‘- - % sin‘O]No (6.22)

Equation (6.22) is the desired equation of the geoid undulation
computation taking into account the ellipsoidal corrections for all the
four methods. Notice that the fourth correction term (6N;) of equation
(6.22) arises from th'e fact that the ellipsoidal effect e?Ag!® has to be
removed from the terrestrial anomalies ZgT, whereas the fifth correction
term (6N) arises from the ellipsoidal correction e2(1/4-3/48in?¢)N, to the
spherical undulation N itself. Taking i=1 (Stokes’ method) and starting
the summation of the second term of the right-hand side in equation

(6.22) from 2, we take
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j=1 £6:22) ye _ Z%; [[ 51(cosp)igTae

Ic
GM 1 al" o . :
+ 57— Y (ol,,+w1,,)(n—1[;] L (CrmCOSMA+S, sinmA )P, ,(sind)
n=2 m=0

Ty
+ Z—GM '_2' Qm(n"l)[-a']n g (CrmCOSMA+S,,sinmA )P, (sind)
e?
2y

Z (Q,n Xin) X (Gnmcosm}\+Hnms1nm)\)P,,,,,(smi)

2 (7 - 2 sin?e)N, (6.23)

Taking into account the relationships (2.35), (2.36) and (2.39), we have
- R AT
NE = v (U S(cosy)Aglde

c

Qgﬂ gooxn(n'l)[%]nmgo(CnmcosmA+SnmsinmA)an(sin$)

GM M
+ 5. L (QnXyp) E (GpmcosmA+H, ,sinmA )P, (sind)
Y n=o m=0

+ o2 % - % sin=¢]N° _ (6.24)

Equation (6.24) is exactly the same as equation (31) derived in (ibid, p.

10845).

Furthermore for i=2 (Meissl’s method) and starting the summation of

the second term of the right-hand side in equation (6.22) from 2, we
take:
i=2 M NE = 41 JI S (cosy)AgTde
™ s
Cc

GM ; a na . . -
+ Sy n§2(02n+Wzn)(n-1) [;] m§°(cnm°°sm}‘+snm51nm>\)P,,,,.(smi)

,ﬂ M 8}" n . )
+ ory z-“an(n"l)[; mgo(Cnmcosmx+snm51nmA)P,,m(51n$)
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2 M n
+ 5= 3 (Q2aXzn) L (GnmCOSMA+H,8inmA)Pq(sind)
7 n=o0 m=0

+ e2 [% - % sin=¢]No (6.25)

Taking into account the relationships (2.47), (2.53), (2.57) and (2.59) we

have:
NE = Z%; [[ (S(cosy)-S,)AgTde
T
M nn
+ % nngzn(n—l) [%] m2=:o(C,,,,,cosm}\+s,,msinm)\)P,,,,,(sin5)

2 M
+ g— L (Q2n—Xap) E (GpmcosmA+H, ,sinmA )P, (sind)
Y n=o m=0

+ o2 % - % sin=¢]No (6.26)

Equation (6.26) is exactly the same as equation (38) derived in (ibid, p.

10846).

The equations for the new methods follow in a similar way for i=3
(Molodenskii’s method) and iz4 (modified Sjoberg’s method) from the

general equation (6.22).

To numerically compute the ellipsoidal corrections the OSUS86F
potential coefficient set (C,,, S,m} up to degree M=36 was used. The
numerical evaluation of the term 6N was done using an approximation of

Ny for all methods taken from

GM Y (a]" n - -
No = =— } [—] L (CamCOSMA+SpsinmA )P, . (sind) (6.27)
Y pn=2'\r’ p=o
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The numerical evaluation of the term 6N; was done as follows: First,
the coefficients {A,, Bnm! Were computed using equation (6.8) with {K,m,
Lom} = {0, 0} (equation (6.17). Then, the coefficients (G,,, H,m} were
computed from (6.6} and (6.7). Finally, the term 6N; was computed from
equation (6.21) for all the four methods using the Fourier coefficients

Xins Qins Win of each method that have been derived in Chapter 2.




CHAPTER VII

LOCAL AVERAGE CORRECTION

The terrestirial mean anomalies ZgT that are used inside the integral
of equation (2.14) (Zg" + TC in case that terrain corrections have been
computed, RgT otherwise), can be expressed as:

Bg = hgs + 6(ag®) | - (7.1)
where Kgs are the mean anomalies implied by the potential

coefficient set, used up to degree M
6(Ags) are the errors of the mean anomalies due to the omission

and commission errors of the given potential coefficients.

Assuming that the potential coefficients are errorless, the error
6(Ags) will be due only to the omission errors (iruncation of the given

field at degree M). Taking the average over a spherical cap ¢, of both

sides of eq. (7.1), we obtain:

% ” AgTlde = = ” Agsde + % ”6(Ags)do' (7.2)
Oc Tc Ic

For a high degree field (M = 180, or M = 360) the average of the
omission errors over a cap of radius on the order of 2° or larger can
be realistically considered zero. This can be justified by the fact that
the average of a short wavelength signal (as the omission error 6{(Ags)
for a high degree field is) over an area of much longer wavelength
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(capsize of 2°) is expected to be zero.

< [ 6cag=)do = 0

Oc

and from (7.2) and (7.3) we must have:

82

(7.3)

(7.4)

Condition (7.4) expresses the fact that the mean over the cap of

the terrestrial anomalies should equal to the mean over the cap of the

anomalies implied by the potential coefficient set.

Of course, if the mean

was taken over the whole earth, then, ideally, both terms of the

left-hand side of (7.3) would be zero and condition (7.4) would hold

(Rapp, 1975):

Z% l[ igTde - Z% lf Agsdo = 0 - 0

In reality

s [f fgvdo - £ [[igesdo = agl - agk =0
O Ic
with g} = 3 || AgTao
¢
and agb = 3 [ AgPao
Ic

(7.5)

(7.6)

(7.7)

(7.8)

For a numerical verification of (7.6) see columns 7 and 8 of Table 13,

where

X ® Ag) and ®p 2 Agh

If we add to the terrestrial anomalies ZgT the difference Ag - Agl = d,

then condition (7.4) is met:
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s || dgm+dras - £ [[Rgeao
0. ac
= % ” (AgT+agB-Ag))de - é ” Agsde
Oc O
= % “ AgTde + % Agd ” do - % Agl ” do ~ % ” Kgﬁda

Ie Ge Iec I

= Agl + Agh — Agl - Agh =0
The difference d = Agb - Agl is a constant correction to be added to
the terrestrial anomalies ZgT used to compute the cap contribution. The

corresponding effect on the geoid undulation can then analytically be

computed as follows:

From equation (2.14) with EgT + d instead of ZgT and n {( M we

obtain:

B A R a .
Ny = 2 ” S (cosy) (AgT+d)de + 3, ngo(QnﬁWm)Agﬁ

¢
¥ 2_.5 ngﬁhongg
= % l{ S,(coswp)&gTda + 2—3 ngo(gin+win)&gg
+ -2% ngaﬂqinﬂgg + Z-;Hr_'; l{ S; (cosy)dde
- Ry + oNg (7.9)

where ﬁi is the geoid undulation computed using each of the four
methods as discussed in Chapter 2. The local average correction term

is:
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B

6Ny =g

” S; (cosy)dda

Oc

We have:

6NY = -4—]:7 d ” S; (cosy)de

I

= 22 4 [[f si(coswrds - [f 5,(cosy)de]
™ g o-d,
= -4-% d [(U S;(cosy)ds - ‘U §i(cos¢)da] (7.10)

From equation (2.11), for n=0 we take:

21Q;o = JI §i(cos¢)Po(cos¢)da, or

g

[ 8y (cos¥)da = 2ma;0 (7.11)
[ 2

Similarly, since X;, are the Fourier coefficients of S;(cosy),

2nX;0 = ” S; (cosy)Po(cosy)de, or

ag

|f si(cosyprde = 2nx,q (7.12)

g

Substituting (7.11) and (7.12) into (7.10), we obtain:

6Ng = 2—';' d (X10-Q40), or
6Ny = 5% (Ag8-2gd) (X;0—Q40) (7.13)

Equation (7.13) is the general expression for the local average
correction, and it can also be used toc analytically compute the effect on
the undulation due to a constant correction to the gravity data EgT (e.g.

a forgotten atmospheric correction).

For each method, equation (7.13) can be reduced as follows:




For izl (Stokes’ method):

o - _B _
6N 2y (Agh—A4gd) (X10—Q10)

- E% (Agh-4gl)Q; o

For i=2 (Meissl’s method)

6Ng = 7 ((Ag8—-agl)(X20—Q20)
= 22 (AgB-Ag])(-250-Qz0)
27 0 20

= E; (Aghb-Agl) (-W20-Qa0)

- E% (Agh-Aagl) (Qao+W3y)

For i=3 (Molodenskii’s method)

R
6Ng = E; (Agh—-Aagl) (X30—Qa0)
= 22 (AgB-Agl)(Ws0)
27 30
= - = (Agh-agl)W
27 30
And for iz4 (Modified Sjoberg’s method)
o - _R
6N2 = 5; (AgB-4gl) (X40—Qa0)

5% (AgB-Ag3) (~Wa0-Qao)

- -2;% (AgB-4g]) (Wao+Quo)
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(7.14)

(7.15)

(7.18)

(7.17)

The numerical values of Q,0y Q20%*W20, Wio 8nd W, o+Q.o, for y=2°, n=20,

M=180, error models (3.1) and (3.2) for the potential coefficients and the

terrestrial data respectively and model (2.18) for the anomaly degree
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variances, are:

Qo = -0.075620

Q20tWzo = —0.035852

Wio = -0.053435 (7.18)
QqotW4o = —0.0583024

Then, the corresponding values a; = (R/27)(Q;at+W;,) in m/mgal of the

corrections 6N{ are (R = 6371000 m and y = 979800 mgal).

a, = 0.245854 m/mgal

a; = 0.116561 m/mgal (7.19)
as = 0.173727 m/mgal :

a, = 0.189550 m/mgal

We can see that Meissl’s method is the least sensitive and Stokes’
method is the most sensitive to a constant correction. Molodenskii’s and
modified Sjoberg’s methods have sensitivities that are between the
Stokes’ and Meissl’s methods. For the numerical evaluation of 6NY, the

values of AgdH, Ag] were taken from Table 13.




CHAPTER VIII

NUMERICAL RESULTS AND STATISTICS

8.1 Computational details

-As discussed in Chaptier 5 the numerical integration of the functions
S;(cosy) was computed using 2°x2°, 6°x10° and 10°x10° mean terrestrial
KgT. The selected capsize was 2° and the functions S;(cosy) were first
tabulated at a spherical interval of 1" out to a spherical distance of 3°.
Then the evaluation of S;(cosy) for each block was done by numerical
integration as follows: Each block was subdivided into elements
depending on the separation y between the computation point (laser
station) and the cell. For ¢¥=4" the number of subdivisions was 64; for
4°<y<8° we had 16 subdivisions; for 87<y£12° the subdivisions were 4
and for 12°<y<2° the evaluation was made at the center point of the cell
(Engelis et al.,, 1985a). The general equation including ellipsoidal
corrections (eq. (6.22)) was applied for all the methods. The outer zone
contribution (second and third term in (6.22)) was computed from the
OSU8BF potential coefficients taken up to degree M=180. Since there is
no zero or first degree potential coefficients in the OSUB6F field the
summations started from 2, although the theoretical formulas developed
start their summations from zero. The correct procedure would be to
start our summations from zero. The ellipsoidal corrections were
computed up to degree Mz36 as mentioned in Chapter 6. The models for
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the error degree variances of the terrestrial anomalies and the anomalies
implied by the potential coefficients are important for the error analysis
of the four methods, but they also play a very important role for the
modified Sjoberg’s method, since for this method the Fourier coefficients
Xans Wa, and Q,, are based on them. The model for the anomaly error
degree variances of the potential coefficient set was taken from equation
(3.1). The models for the terrestrial anomaly error degree variances
were selected for each region as Table 16 shows:

Table 16. Models for the Terrestrial Error Anomaly Degree Variances
Selected by Region.

Region Model
UNITED STATES [B.1
BERMUDA B.1
AUSTRALIA B.1
EUROPE A [Bn=Bn(6"x%107)]
JAPAN A [B,=f(10°x10")]

Finally the number n of harmonics that were removed from the Stokes’
function for the Molodenskii’s and the modified Sjéberg’s method was
taken to be 20 (<M=180). For comparison purposes the point undulation
of the laser station was computed using the OSU86F potential
coefficients in equation (6.23) witﬁ M=360.

8.2 Numerical resulis

Table 17 shows the results of the undulation computations with the
Stokes’ method. The first and second columns show the number and the
name of the laser stations; the third column shows the reference for the
ellipsoidal height of the stations; the next three columns represent the
three compoﬁents of the undulation (see equation (6.22)); cap

contribution, NC, potential coefficient contribution (outer zone) NP, and
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Table 17. Geoid Undulations of the Laser Stations Using Stokes’ Method

(Units are in meters).
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Table 18. Geoid Undulations of the Laser Stations Using Meissl’s Method

(Units are in meters).
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ellispoidal correction NE (6N, +6N terms of eq. (6.22)). For the 17 laser
stations in the Western United States the NC includes the cap
contribution using terrain-corrected gravity anomalies and the indirect
effect 6N; (see eq. (5.15)):

NC = ZRE {| (Bgm+10)5(cos¥)da + oNy (8.1)

dc

In Tables 17 through 21 the "NC" column will always be given by
(8.1) for the various modifications of the Stokes’ function S;{cosy),
unless otherwise stated. The seventh colunm (N) is the total undulation
computed using the OSU86F set up to M-360 (equation (6.27)). Finally,
the last column is the value of the undulation computed from equation
(4.2) (Ellipsoidal minus orthometric height). Units are in meters. Tables
18, 19 and 20 show the results for Meissl’'s, Molodenskii’s and modified
Sjoberg’s methods a-nd their description is identical with the description

of Table 17 above.

Table 21 summarizes the results of the four methods by region: The
first two columns show the number and name of the laser station;
columns three to six show the total undulation computed using the four
different methods: Stokes’, Meissl’s, Molodenskii’'s and modified Sjoberg’s
method respectively; the seventh column shows the height reference; the
eighth column shows the wvalue of the undulation using the OSU86F set

as above and the last column shows the value of the undulation

computed from equation (4.2).
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In Tables 22 and 23 the undulations for the western United States
laser stations computed using terrain-corrected (NC from (8.1)) and
uncorrected gravity data with the modified Sjoberg’s method are shown.
In Table 24 the total geoid undulation of the laser stations using the
local average correction discussed in Chapter 7 for all the four methods
are shown. The magnitude of this effect is 1-2 m. It would be helpful
to have a table of residuals between the undulations computed using all
the four methods and the undulations computed from equation (4.2).
These residuals were computed only for the 28 laser stations with known
height references. Table 25 shows the number and name of the laser
stations, the differences Ni-(h-H) where N; are given in Table 21 for all
the four methods and h-H is the undulation computed from eq. (4.2), the
height references and the residuals between the undulations computed

from the OSU86F set (M=360) and the h-H value.

The corresponding table of residuals when the local average
correction is included is shown in Tab-le 26. The statistics of the
residuals between the terrain-corrected N;c and the uncorrected Nyy
using the modified Sjoberg’s method and the Ny = h-H value are shown
in Table 27 for the 12 laser stations in the western United States

(corresponded values in Tables 22 and 23).

In Table 28 the statistics of the residuals of the Table 25 are shown
(undulations computed using all four methods vs. the N; value) and in
Table 29 the corresponded statistics including the local average

correction are shown.
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Table 24. Total Geoid Undulations of the Laser Stations Using All tl}e
Four Methods and the Local Average Correction (Units are in
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Table 25. Differences Between the Undulations Computed Using All the
Four Methods (and the OSU86F set) and the N; Value (Units

are in meters).

Number of Stations: 28.
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Table 26. Differences Between the Undulations Computed Using All the
Four Methods (and the OSU86F set) with the Local Average
Correction and the N; Value (Units are in meters).
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Statistics of the Differences Between the Terrain-corrected Niy¢
and Uncorrected Nyy Undulations and the Ny Value Using the
Modified Sjoberg’s Method for Stations in the Western United
States (Units are in meters). Number of Stations: 12.

STATISTICS Nip—Np Nyn—N1

Mean Difference -2.17 -2.68
RMS Difference 2.31 2.83
Standard Deviation Difference 0.79 0.92
Minimum Difference -4.02 -4,32
Maximum Difference -1.07 -1.29

Table 28.

Statistics of the Differences Between the Undulations Computed
Using All the Four Methods N; (and the OSU86F Field) and the
N; Value (Units are in meters). Number of Stations: 28.

STATISTICS | N,—N; | N;-Ng | Ny-Np | Ne-N; | Ng-N;y | Ng-Ni¥

Mean Difference -1.27 | -1.18 | ~1.21 -1.21 -1.39 | -0.92
RMS Difference 1.70 1.65 1.66 1.65 2.36 1.44
Standard Dev. Diff. 1.13 1.15 1.14 1.12 1.91 1.10
Minimum Difference -4.41 -3.78 -4.06 -4.02 -7.47 -3.42
Maximum Difference 0.58 0.72 0.65 0.96 0.59 0.59

¥excluding stations 7120, 7210

Table 29. Statistics of the Differences Between the Undulation Computed
Using All the Four Methods N; Including the Local Average
Correction and the Ny Value (Units are in meters). Number of
Stations: 28.

STATISTICS N;—-Nt N2—Ny N;—Ny Nz—Ny

Mean Difference -1.00 -1.06 -1.03 -1.03

RMS Difference 1.52 1.58 1.54 1.53

Standard Deviation Difference 1.14 1.17 1.15 1.17

Minimum Difference -2.78 ~-2.85 -2.82 -2.90

Maximum Difference 0.93 0.86 0.89 1.01

8.3 DiscusSion of the results

Comparing the terrain-corrected vs. the uncorrected undulations for

12 stations in the western United States (Table 27) we see that the

terrain-corrected undulations have better agreement with the N; value
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than the uncorrected undulations: The mean and the RMS difference
with the N; value reduced by ~50 cm when terrain-corrected data was
used. The standard deviation of the difference also decreased by ~20

cm when the terrain corrections were taken into account. When we

compare the four methods with the N; value for all the 28 stations for
which we have known height references the standard deviation of the
difference is ~1.10 m (Table 28). From the same Table we can see that
the standard deviation of the difference between the undulations
computed using the OSU86F set and the Ny values is 1.81 m, If we are
to exclude the two laser stations 7120, 7210 in Maui that 'show large
discrepancies, then the standard deviation of the difference drops to
1.10 m. If we examine Table 25 we see that there are systematic
differences for the undulations of the 12 Western United States stations
and the Ny value on the order of 2 m. To further investigate these
systematic differences the 15°x15° mean anomalies in the northern
"United States and Canada (Lachapelle et al.,, 1982) were used to compute
geoid undulations for the above stations. The statistics of the residuals
between the values of the undulations using the above data set and the
Ny value are shown in Table 30 for all four methods. For the same 12
stations the corresponding statistics using the 2°x2° anomalies (Table
12) are shown in Table 31. We can see that the systematic differences
are also present when the 15°x15° anomalies are used. However, the
standard deviation of the difference decreased from 79 cm (2°'x2° data)
to 65 cm (15°x15° data) which is surprising since one would expect
better accuracy when the 2'x2° data are used instead of the 15°x15°

data. The explanation may be that the 15° averaging procedure was
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Table 30. Statistics of the Differences Between the Undulations Computed
Using the 15°x15° Anomalies and the N; Value for the 12
Western U.S. Laser Stations. The Modified Sjoberg’s Method
Has Been Used (Units are in meters). :

STATISTICS N,-Ny N.—-Ny N,—Nt N,~Ny
Mean Difference -1.99 -1.72 -1.83 -1.82
BRMS Difference 2.10 1.83 1.93 1.95
Standard Deviation Difference 0.65 0.65 0.61 - 0.72
Minimum Difference -2.88 -2.66 -2.64 -2.69
Maximum Difference -1.04 -0.73 -0.87 -0.62

Table 31. Statistics of the Differences Between the Undulations
Computation Using the 2'x2° Anomalies (and the OSUS86F Field)
and the N; Value for the 12 Western U.S. Laser Stations. The
Modified Sjoberg’s Method Has Been Used (Units are in

meters).

STATISTICS N,-N; N,—-Ny N,~Ny N,—Ny Np—N¢
Mean Difference -2.29 -2.06 -2.17 -2.17 -1.46
RMS Difference 2.43 2.21 2.31 2.31 1.59
Standard Dev. Diff. 0.81 0.81 0.79 0.79 0.63
Minimum Difference -4.41 -3.78 -4.06 -4.02 -0.53
Maximum Difference -1.34 -0.81 -1.04 -1.07 -2.58

better than the 2° averaging procedure. The undulations computed from
the OSU86F set for the above 12 stations give statistics similar to the
undulations computed from the 15°x15° data when compared to the N;
value. This i8 an expected result, since the 15°x15° data was used for
the computation of the OSU86F set. The cause of the above systematic
differences was not found and further studies are needed to investigate

why these systematic differences are present.

The application of the local average correction improves the

statistics as it can be seen by comparing Tables 28 and 29. Note the
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improvement (compare Tables 25 and 26) of about 2 meters of the
undulation of station 7082 in Bear Lake, Utah when the local average

correction was used with respect to the Ny value.

Furthermore, there is an excellent internal agreement between the
undulations computed using all the four methods. The standard
deviations of the differences between the undulations computed using
two different methods is on the order of 20 cm. When the undulations
computed using all the four methods are compared to the undulations
computed using the OSU86F set . they have a standard deviation
difference of about 1.5 m. The largest differences betwgen the wvarious
methods and the OSU86BF set occur for the 2 laser stations on Maui
(~5 m) and for the Bermuda station (~3 m). The gravimetric undulations
for the above cases are closer to the N; values than the undulations

computed from the OSU86F set.

Using a set of 14070 point free-air gravity anomlies by Watts
(private communication, 1987) in the vicinity of Hawaii the geoid
undulation of the laser station 7210 was computed to be as follows:
1864 m, 17.95 m, 18.26 m and 18,50 m for the Stokes’, Meissl’s,
Molodenskii’s and modified Sjoberg’s method respectively. We can see
that the above results agree within ~20 cm with the gravimetric values
of the undulations of Tables 21 and 24. From the gravity data sent by
Watts 8.43 mgal were subtracted to account for a systematic difference

that was detected within the 5°x5° computation area in the vicinity of
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Hawaii between the Watt’s set and the anomalies implied by the OSUS8S6F

set.

8.4 Altimeter Geoid Undulation Computations in Bermuda Area

An alternative method to compute geoid undulations is the method
of thé least squares collocation. This method was applied to the 10360
Ohio State adjusted GEOS-3/SEASAT altimeter sea surface heights (Liang,
1983) covering the Bermuda region (33°4$<31°.63, 294°.54)<295°.87, laser
station number 7067). The above altimeter data was referred to an
equatorial radius of 6378137 m. To refer the altimeter data to the
equatorial radius of our adopted reference ellipsoid (see Chapter 4,
equation (4.1)) we added 1 meter to all the sea surface heights that
were selected for the collocation method. We then used the collocation
method to compute the undulation at the laser station 7067 with the
following specifications:

a) The whole area (1°.37 x 1°.37) was subdivided into 49 0°.20 x
0°.20 sub-areas so that a maximum of 300 points were used for
each area by the collocation method. For the predictions near
the edges of each 0°.20 x 0°.20 area, a border of 0°.20 was
specified.

b) The covariance function used between degrees 2 and 180 was the
one implied by the anomaly error degree variances of the
potential coefficient solution of Rapp (1981b); between degrees
180 to « the Tscherning-Rapp (1974) model (see eq. (2.18)) was

used for the anomaly degree variances.
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c) The reference field up to 180 was removed from the data using
the solution of Rapp (1981b).

d) The predictions of the undulations were done at the intersections
of the points of a grid of 2°x2°. The value of the undulation for
the laser station 7067 was then computed using the four closest
grid poin'ts by bi-linear interpolation with respect to the latitude

and the longitude.

The value of the undulation computed from the above collocation
method was -32.11 m. The accuracy of the undulation predictions at the

four closest grid points was 20.28 m.

Using the results of the collocation method and the modified
Sjoberg’s method two geoid maps (Figures 14 and 15) were produced in
the Bermuda region (31°.63<$£33°, 294°.5¢A4295°.87). The corresponding
map of the differences between the gravimetric and the altimetric geoid
(Figure 14 - PFigure 15) is shown in Figure 16. The mean difference of
the 1764 undulations computed at the 2° grid intersections in the above
region minus the corresponding altimetric undulations was -0.63 m; the

RMS difference was 0.78 m and the standard deviation of the difference

was 0.47 m.

The laser station 7067 has been also used for the calibration of the
altimeter satellites (Kolenkiewicz et al., 1982). Using the four Ilaser
supported calibration passes of SEASAT at the time of closest approach

to the laser station the geoid undulation has been computed for these
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passes By Kolenkiewicz et al. (1987), as follows: To the raw altimeter

data correctiong due to tides, dry troposphere, wet troposphere,

ionosphere, center of gravity, sea state bias and height acceleration
were applied. Then for the above four closest passes the geoid
undulation was obtained from the corrected altimetric observations and

the tracking data by smoothing the offshore altimeter data across land
(ibid.,

Table 5). Table 32 summarizes the results obtained from the

above SEASAT calibration for the four passes: The first columm gives
the date of pass, the second column gives the latitude, the third column
gives the geoid undulation which refers to an equatorial radius of
6378137 m and the last column gives the geoid undulation which refers

to our adopted equatorial radius of 6378136 m and is obtained by adding

1 meter to column three.
Table 32. Geoid Undulations in meters for the Four SEASAT Passes at

the Time of Closest Approach to the Laser Station 7067 in
Bermuda (Kolenkiewicz et al., 1987).

Date of Pass|Latitude Undulation Undulation
1978 (a,=6378137 m) | (a,=6378136 m)
Sept. 13 |32-.3520 -32.89 -31.89
Sept. 16 |32°.3553 -32.84 -31.84
Sept. 22 }32°.3615 -32.69 -31.69
Oct. 1 32*.3653 -32.62 -31.62

The accuracy that is associated with the above computations (ibid., p.

27) is %12 cm. To obtain a unique value for the undulation of the laser
station (¢ = 32°.3538) we can linearly interpolate this value with respect

to the latitude from the first two values of the undulation (a, = 6378136

m) of Table 32. This interpolated value of the undulation at the laser
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gstation is then -31.86 m.

Summarizing the geoid undulation computations for the laser station
7067 in Bermuda we have: The gravimetric undulations using all the
four methods (Table 21) are: -32.05 m, -32.10 m, -32.08 m, and -31.97 m
for the Stokes’, Meissl’s, Molodenskii’s and modified Sjoberg’s methods
respectively; the "ellipsoidal minus orthometric” value of the undulation
is -31.81 m; the wvalue computed from the Ohio State GEO0OS-3/SEASAT
altimeter data is -32.11 m; and the wvalue resulted from the SEASAT
calibration is -31.86 m. Thus the resulis for the Bermuda laser station
undulation show a very good agreement on the order of 30 cm using all
the different methods. This is clearly due to the sufficient coverage of
terrestrial gravity anomalies and GEOS-3/SEASAT altimeter sea surface

heights in the Bermuda region.
Finally note that the deviation of the sea surface from the geoid,
known as Sea Surface Topography (SST) plays an important role in the

above computations and is separately discussed in Appendix B.

8.5 Altimeter Geoid Undulation Computations for the Five Laser Stations

in the Western Atlantic and Pacific Using Collocation

Finally, the collocation method applied to the adjusted
GEOS-3/SEASAT surface heights as before was used to compute geoid
undulations on islands in the Western Atlantic and the Pacific since no
terrestrial gravity data was available for the above stations. For each

laser station a window of A¢ = 0°.25 in latitude and AN = 0°.25 in
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longitude centered at the laser station with a border of 0°.25 was used.
Again the maximum of data points used was 300. The predictions of the
undulations were done at the intersections of the points of a grid of
3'x3°. The value of the undulation was then computed using the four
closest grid points by bi-linear interpolation with respect to the latitude
and the longitude. Figure 18 shows the undulation map derived from 54
adjusted GEOS-3/SEASAT altimeter data (whose distribution is shown in
Figure 17) for the laser station 7061 on Easter Island, Chile. Table 33
shows the laser station number; the number of adjusted GEOS-3/SEASAT
altimeter data that were used in the predictions for each oceanic station;
the undulation N, ;1 computed from the OSU86F set taken up to degree

360; and the differences N,,y-Ny and Npg7-Ny.

In Table 34 we can see the statistics of the differences N, 7-N;y and
Npot-N7 for the five oceanic stations. The results using the collocation
method showed better agreement with the N; value than the OSUS86F set.
The standard deviation of the difference in the first case is 0.79 m and
in the second case is 1.25 m. Also the mean difference in the first case
is by 1.85 m smaller than in the second case. The better agreements
with the N; values using the collocation method than using the OSUS86F
set can be explained as follows: Within the collocation method used here
all the available altimeter sea surface heights in a 0°.75 x 0°.75 area
were taken into account, whereas for the OSU86F solution 0°.5 x 0°.5
mean anomalies derived form the above sea surface heights were used,
where clearly some loss of the high frequency information has taken

place.
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Finally, the effect of the Sea Surface Topography is separately

discussed in Appendix B.

Table 33. Geoid Undulations Computed Using the Collocation Method
(NaL7), Based on Adjusted GEOS-3/SEASAT Altimeter Data and
from the OSUS86BF Field, for the Five Oceanic Laser Stations
(Units are in meters).

STATION DATA NaLy Npot Nt Nar1-Ny | Npgi-N
7061 54 - 3.26 - 3.35 - 2.25 -1.01 -1.10
7068 299 -42.63 -44.81 -42.53 -0.10 -2.28
7092 127 31.77 28.72 32.18 -0.41 -2.46
7096 40 33.36 30.45 34.69 -1.33 -4.24
7121 96 8.00 5.96 10.35 -2.35 -4.39

Table 34. Statistics of the Differences N, ;-Ny and Npgy-Ny for the Five
Oceanic Stations (Units are in meters).

STATISTICS NALT—NT NDOT_NL
Mean Difference -1.04 -2.89
RMS Difference 1.30 2.04
Standard Deviation Difference 0.79 1.25
Minimum Difference -2.35 -4.39
Maximum Difference -0.10 -1.10




CHAPTER IX

SUMMARY AND CONCLUSIONS

The geoid undulations for 39 laser stations distributed around the
world have been computed using the classical Stokes’ and Meissl’s
methods and the new methods of Molodenskii’s and modified Sjéberg’s.
The high frequency information for the undulation was taken from
gravity data within a cap of radius 2°* and the 1low frequency
information was taken from a set of potential coefficients (OSUS86F).
Using the ellipsoidal heighis of the laser stations available from the SL6
satellite dynamic solution and the orthometric heights H, awvailable from
spirit leveling, the values of the geoid undulation Ny=h-H was obtained

and served as a mean for comparisons.

The theoretical improvement in the accuracy of the geoid undulation
computations uéing the modified éjéiberg’s method was on the order of
10 cm (Figure 1) which is well below the noise of the actual data used
and thus this theoretical improvement was not realized in practice. No
method was clearly better than the others. However, all the four
methods gave internally consistent results on the order of 30 cm and
for most of the regions (Australia, Europe, Bermuda, eastern United
States) there was an agreement of ~60 cm or better between the
undulations computed from the four methods and the N; value (see Table

111
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25). PFor some regions where local high variation of the gravity field
occurs (e.g. Maui, (stations 7120,7210), Bermuda (station 7067)) the
OSUB6F field gives high discrepancies as compared to the Ny values.
The "worst" situation was in Maui, where the OSU86F value of the
undulation differs from the N; value by about 7 meters (Table 25). This
large difference can be explained by the fact that the OSU86F, being a
limited expansion to degree 360 cannot represent the very high
frequency signal of some regions of high wvariation of the gravity field.
Such regions are the islands of Maui and Bermuda. The effect of the
terrain was taken into account for the 17 laser stations in the Western
United States where the terrain was considered to be rough. The effect
of this correction was on the order of 60 cm (Table 27). For most of
the laser stations no terrain corrections and/or height information was
available and thus the computed wvalue of the undulation will be
systematically low. This is clearly the situation for the two stations in
Hawaii, where the difference between the computed undulations using
the four methods and the N; wvalue is ~2 m (see Table 25). The
ellipsoidal corrections for the four methods were derived in a uniform
formulation. Using the OSU86F set up to degree 36 those corrections
were computed and they were very small in magnitude (maximum: 3 cm
which is in good agreement with the results obtained in (Rapp, 1981b,
Table 1)). Consequently, they could be neglected in the total undulation
computation. A very important correction due to inconsistencies between
the local terrestrial anomalies and the anomalies implied from the
geopotential set within the same region of a 2° cap, called the "local

average correction" was applied to all the computed undulations. The
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effect of this correction reached 2 m for station 7082 in Bear Lake, Utah
{(compare Tables 25,26) and it improved the results with respect to the
Ny value by about 30 cm for 28 laser stations that were used for the
comparisons (Tables 28,29). It seems that this correction has to always
be applied when geoid undulations are computed by a combination of
terrestrial data and potential coefficient information. Very good
agreement (~30 cm) was achieved between the gravimetric undulations
using the four methods, the altimetric undulation, the undulation
obtained from the calibration of SEASAT (Kolenkiewicz, 1987) and the Ny
value for the station 7067 in Bermuda (see discussion at the end of

Section 8.4).

The collocation method using Ohio State adjusted GEOS-3/SEASAT
altimeter data for five oceanic stations resulted in values of the

undulation consistent with the N; wvalue on the order of 70 cm (Table

34).

Using the low of propagation of errors the accuracy of the
computed geoid undulations for each of the 44 laser stations could be
computed from the errors in the gravity data surrounding the laser
statio’n, the accuracy of the given potential coefficients and from various
models that could represent the omission and discretion errors. These
accuracies were not computed individually for each laser station
although global error models were considered in the error analysis of
the various methods in Chapter 3. The global RMS undulation error

from Chapter 3 for the capsize of 2°* was computed to be approximately
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60 cm for all the four methods (Figure 1). Finally, the accuracies of the
altimetric undulations for all the five oceanic laser stations using the

collocation method were computed to be ~20 cm.




CHAPTER X

RECOMMENDATIONS FOR FUTURE STUDIES

It i8 very critical for the future applications of the modified
Sjoberg’s method that error degree variance models of the terrestrial
data which will represent the actual local behavior of the error
estimates of those data should be developed. The modification of the
Stokes’ function for the modified Sjoberg’s method is essentially based
on the above error models and if the models are properly chosen this
method will give the smallest possible error in the geoid undulation
computations. A Monte~Carlo method modeling the empirical error
covariance function could be suggested. Then, the error degree
variances can be obtained by integration of the error covariance

function.

The anomaly error degree variances implied by a geopotential model
would certainly be different if a full variance-covariance matrix of the
potential coefficients could be available. This would again influence the

modified Sjoberg’s method but the exact effect was not tested.

Another important investigation for precise undulation computations
can be the effect of the zero and first degree term of the error anomaly
degree variances of the terrestrial data and the zero degree term of the
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error degree variances of the potential coefficient data (so, o, and 6C,
respectively, following the notation of the introduction) on the
computation of the W,, coefficients in the modified Sjoberg’s method.
Although the theory was given by equation (2.106) and (2.107), for the
numerical applications we assumed ¢,=6Co=c,=0. It seems that the
stability of the solution (2.108) will be increased by admitting zero and
first degree term for the above error degree variances, although this
was not checked. The local average correction should be more
extensively checked using actual geoid computations. Gravimetric geoid
undulation computations in Doppler or GPS stations including and
excluding the zero order correction could give a definite answer
whether this correction should be applied or not. However, the answer

reached here is that this correction has to always be applied.

Finally, the collocation method of computing undulations using the
randomly distributed point gravity data surrounding the laser stations
could be applied and the results could be compared with the ones given

here using the integral formulas.
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APPENDIX A

Proof of equations (2.105), (2.106) and (2.107):

The expression of the global mean square error combining equations

(2.98), (2.99), (2.100), (2.101) and (2.102) is:

R R R D A = S

b 5 (25 - Qun)” Cot B (@upthn)sc
— n-1 4n n nZo 4an"Wan n

+ T 03,60, + I Q30 (A.1)
n=n+1 " n=M+1 4
For convenience, let us use the substitutions
Xan = Xp R
Qun = Qq (A.2) 5; = c (A.3)
Wan = W,

The minimization of ﬁﬁ expressed in (2.103) is equivalent to the

conditions

3/6N2\

RACLLY A = i
W, 0, k=0,1, . . . ,n (A.4)

where, from (A.l) and (A,Z),'(A.3):

TN2 = 2 n - 2 T 2 _ 2 v ._g_ - 2
6N3 = c [ngo(xn Q) 2a, + n£ﬁ+1 — Q,.] On +n:nT“[n__1 Q,,] Cn
;l M @
+ 3 (QuWn)?6C, + I Q36C, + T QiC,| (A.5)
n=o0 n=n+1 n=M+1

Denoting with I,, L2, Is, I+ Is and I, the summations in (A.5) and

taking into account eq. (2.96), we have:
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n n n
I, = go(xn'Qn)zdn = Eo[xn_an + z g wrern]zan

n 2 2 n ; 2
Zz = ZI [___ - Qq On = zz [_Z- - Qi t E g—_l wrern] On
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Thus, condition (A.4) can be written

3(6N2) _ 3[c?(F,+L,+La+T,+ls+

W, W,
_ €23(T 4 a+ st et
W,
=Czﬁl+ﬂz+i&+ﬂi+ﬂi+i§ﬁ :0’

aw, | aW, | AW, W, | aW, = aW,

or, since c2=(0

ay ar; . 3% ay T, . 2 -
g4, 823 | S%la s _ _
oW, + W, + 3, + W, + W, + an, 0, K=0,1, . . (A.7)

. Using the obvious relationships

3Xa) © s, k=0,1, . . . .A

W, -1
(A.8)
3(Q 2k+1
_%th = - 5 ©xn, k=0,1, . . . ,n

where 6y, is the Kroenecker’s §: 6,, = {2 ﬁ:ﬁ, we evaluate the

partials (A.7) from (A.6), one by one:
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3 n n 2r+l 2k+1
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where, for (A.9) - (A.14) K=0,1, . . . ,n.
Taking into acount that
n n n 2
ngo(“xnakn)dn =n§own6knd" _ngz n—_l‘ 6kl’|6n (A.15)
and
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the partials (A.9) - (A.14) can be written:
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Using condition.(A.7) and adding (A.17) - (A.22), we obtain
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The third term of the left hand side of eq. (A.23) can be written:

mnoon 2r+l n 1
I S5 Weernbin(ontoCy) = § 2521 Woe \ (a,+60,) (A.24)
n=o0 r=o0 r=o

Using (A.24) into (A.23) we obtain after collecting the common factors of
W,
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where X,, are given by (2.39).

It is now obvious that equations (A.25) are equivalent to the linear

system
tgoaktwt = hye k=0,1, . . . ,i (A.26)
With agy = g, = (04+6Ce) 0kt — L ey (0, +6C,) - B o, (autoCy)
. Zkel 2t41

1 [ M ny
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+1
2k+l [ M
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Equations (A.26), (A.27) and (A.28) after the substitutions (A.2) and (A.3)

give immediately equations (2.105), (2.16) and (2.107) which were to be proven.




APPENDIX B

The deviation of the sea surface from the geoid, known as the Sea
Surface Topography (SST) plays an important role when the gravimetric
or the altimetric undulation are compared to the ellipsoidal minus
orthometric value of the undulation of laser stations on islands. From

Figure Bl we can see that the orthometric height (H) of a laser station.

f LASER STATION
H

/v/\__/’\,"—\.. —— /\__,\v’x‘\‘
//\' h . ~. SEA SURFACE

/\/\‘/N’\/\\'\ GEOID

Figure Bl. Role of the Sea Surface Topography (¢) for Undulation
Computations in Oceanic Laser Stations.

the SST ({), the geoid undulation (N°) and the ellipsoidal height (h) of

the laser station satisfy the equation:
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h=H+ ¢+ N (B.1)
In writing equation (B.l) the basic assumption that has been made is
that the vertical datum to which the orthometric height of the laser
station refers is assumed to coincide with the mean sea surface as is
realized by the altimetric observations. From (B.1) the wvalue of the
undulation will be

N = (h-H) - ¢ (B.2)
From Chapter 4, equation (4.2), and from equation (B.2) we take:

N =Ny - ¢ (B.3)
Thus, from the value of the undulation Ny computed in Chapter 4, the
value of the SST has to be subtracted, so that the undulation N°’
obtained can be compared to the gravimetric undulation of the laser
station. We thus assume that the gravimetric undulations of the laser
stations are free from the effect of SST. This is not rigorously true,
since the SST influences the gravity anomaly data which are used to
compute the gravimetiric undulations, but this effect can be considered

negligible (Rapp, 1985b).

Four different SST harmonic coefficient sets described in (Rapp,
1985b, Appendix B) were used to compute ¢. These sets were computed
by Engelis (private communication, 1987) similarly as in (Engelis, 1985b)
and they are as follows:

Set No., 1: SST harmonic coefficients complete to degree and order 36.
The PGS3041 potential coefficient set, an intermediate set for
the GEM-T1 (Marsh et al., 1986) has been used to realize the

geoid up to degree 36. The high frequencies from degrees
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37 to 180 were removed from the SEASAT sea surface heights
by using the potential coefficients of the solution described
in (Rapp, 1981b).

Set No. 2: SST harmonic coefficients complete to degree and order 36;
the PGS3041 set has been used up to degree 36.

Set No. 3: SST harmonic coefficients complete to degree and order 10,
based on the Levitus (1982) data.

Set No. 4: A set of 64800 1°x1° global values of SST based on Levitus
data.

The computation of the SST at the laser stations using Sets No. 1-3 was

done as follows:

M
(=1

n=0 m=0

1t~13

(chmcosmh + d,,sinmA)P, . (sind) (B.4)

where c,n dpm are the SST harmonic coefficients and $ is the geocentric
latitude of the laser station. The degree of expansion M was taken 6

for all the three sets.

The computation of the SST at the laser stations using the Set No. 4
was done using the four 1°x1°® closest points to the laser station in a
bi-linear interpolation with respect to the latitude and longitude of the

laser station.

The results of the SST computations using all the four SST sets
described above are shown in Table Bl for 5 laser stations. The
number and the name of the laser stations appear in the first two

columns; the location of the stations appears in the third column; finally
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the SST as computed from Sets No. 1-4 ((S1),(S2),(S3),(S4)
correspondingly) is shown in columns four-seven. The units for the

SST is meters.

Table Bl. Sea Surface Topography in meters for 5 Laser Stations Using

NUMBER NAME OCCUPATION Sl s2 S3 sS4
7210 MAULAS |Maui, Hawaii 0.81 | 0.88 | 0.44 | 0.32
7067 BDILAS |Bermuda Island 0.55 | 0.61 | 0.07 | 0.09
7838 SHOLAS |Simosato, Japan 0.93 | 0.86 | 0.43 | 0.22
7090 YARLAS Yarragadee, Australia -0.10 |-0.12 0.11 0.00
7943 ORRLAS |Orroral Valey, Australia{ 0.16 0.10 }-0.03 0.00

For the above five laser stations the gravimetric undulations are
available using four different methods (See Table 21). We select here
the undulations computed using the modified Sjoberg’s method to
represent the gravimetric undulation of stations 7210-7943 of Table B1.
These undulations are shown on the second column of Table B2; then,
the N; value of the undulation computed from (4.2) is shown in the
third column; the corrected values of N; through equation (B.3) using
the above four SST sets (N'=N;-¢) is shown in columns four-seven.
According to our discussion above the undulations of column two should

be compatible only with the values of the undulations of columns

four-seven of Table B2.

The differences N-N; and N-N" for the four SST sets are shown on
Table B3; Table 37; the corresponded statistics of these differences are
shown on Table B4. It can be seen from Table B4 that the mean and

the RMS differences were decreased in all cases that the SST correction
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Table B2. Gravimetric Value of the Undulation (N), N; (Uncorrected for

SST) and N =N; (Corrected for SST Using the Sets No. 1-4)
for 5 Laser Stations in meters.

NUMBER N Ny N (S1) N"(82) N“(83) N'(s4)
7210 18.66 20.49 19.68 19.61 20.05 20.17
7067 -31.97 -31.81 -32.36 -32.42 -31.88 -31.90
7838 38.63 39.97 39.04 39.11 39.54 39.75
70380 -24.88 -24.28 -24.18 -24.16 -24.39 —24.28
7943 18.85 20.38 20.22 20.28 20.41 20.38

was applied to the N; wvalues as compared to the mean and the RMS
differences with the uncorrected N; values. The standard deviation of
the differences remained essentially the same when the first two SST
sets were used, and slightly decreased (~0.05 m) when the last twa SST

sets were used.

The accuracy of the SST computed using the four sets as above is
thought to be approximately %20 cm (Rapp, 1985b, p. 106). Consiaering
this accuracy estimate is true, we can say that the inclusion of the SST
effect clearly improved the individual and overall comparisons of the

gravimetric undulations with the (corrected) N; value.

Table B3. Differences N-N;, N-N'(S1), N-N"(S2), N-N"(S3) and N-N’(S4) in
meters (see Table 36) for the 5 Laser Stations.

NUMBER N-N; N-N"(S1) [N-N"(S2) |N-N"(S3) |N-N"(S4)
7210 -1.83 -1.02 -0.95 -1.39 -1.51
7067 -0.16 0.39 0.45 -0.09 -0.07
7838 -1.34 -0.41 -0.48 -0.91 -1.12
7090 ~0.60 -0.70 -0.72 -0.49 -0.60
7943 -1.53 -1.37 -1.43 -1.56 -1.53
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Table B4. Statistics of the Differences N-Ny, N-N’(S1), N-N’"(S2), N-N"(S3)
and N-N'(S4) in meters (see Table 36) for the 5 Laser

Stations.

STATISTICS N—-Ny N-N"(S1) [N-N"(82) |[N-N"(S3) |N-N"(S4)
Mean Difference -1.09 -0.62 -0.63 ~-0.89 -0.97
RMS Difference 1.25 0.86 0.88 1.04 1.12
Standard Dev Diff 0.61 0.60 0.61 0.54 0.56
Minimum Difference -1.83 -1.37 -1.43 -1.56 -1.53
Maximum Difference -0.16 0.39 0.45 -0.09 -0.07

Although the sample of the 5 laser stations used here is small, the
systematic improvement of the results when the SST was considered is
clear. We thus can say that the SST effect has to always be taken into
account when geoid undulations at an accuracy level of 50 cm or better

are to be computed.




